Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\)C=\(\frac{\text{1.2.3.4...99.100}}{\text{2.4.6....100}}\)
\(\Rightarrow\)C=\(\frac{\text{1.2.3...99.100}}{(2.2....2)(1.2.3.4.5....50)}\) [50 chữ số 2]
\(\Rightarrow\)C=\(\frac{51}{2}.\frac{52}{2}...\frac{100}{2}\)=D
vậy C=D
-->C=\(\frac{1.2.3.4...99.100}{2.4.6....100}\)-->C=\(\frac{1.2.3...99.100}{\left(2.2....2\right)\left(1.2.3.4.5....50\right)}\)[50 chữ số 2]
-->\(C=\frac{51}{2}.\left(\frac{52}{2}\right)....\left(\frac{100}{2}\right)\)=D vậy C=D
________________________________________________________
LI-KE CHO MK NHÉ BN
xử lí C ta có C=51.52.53.....100/250
ta nhân cả tử và mẫu của C với 1.2.3.........50 thì dc
(1.2.3.4.5.6.........................50).(51.52..............100)
(1.2.3.4...............................50) (2.2...................2) có 50 thừa số 2
tử giữ nguyên xét mẫu ta có (1.2........50).(2.2.......2.2)= (1.2)(2.2)......(50.2)=2.4.6.8......100 vậy triệt tiêu tử cho mẫu thì ta dc c=1.3....97.99
tức C=D
Ta có: \(1\cdot3\cdot5\cdot9=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot99\cdot100}{2\cdot4\cdot6\cdot...\cdot100}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot100}{2\cdot1\cdot2\cdot2\cdot...\cdot2\cdot50}=\frac{1\cdot2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot50\cdot2\cdot2\cdot2\cdot...\cdot2\cdot2}\)
\(=\frac{51\cdot52\cdot...\cdot100}{2\cdot2\cdot2\cdot...\cdot2\cdot2}\)( 50 THỪA SỐ 2 ) \(=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}\cdot...\cdot\frac{100}{2}\)
bang nhau
Giai:
A=1.3.5.7...97.99=\(\frac{\left(1.3.5...97.99\right).\left(2.4.6...100\right)}{2.4.6...100}\)
=\(\frac{1.2.3.4...99.100}{\left(1.2\right).\left(2.2\right)...\left(2.50\right)}\)
=\(\frac{\left(1.2.3...50\right).\left(51.52...99.100\right)}{\left(1.2.3...49.50\right).2^{50}}\)
=\(\frac{51.52...99.100}{2.2...2.2}\)
=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
mà B=\(\frac{51}{2}.\frac{52}{2}.\frac{53}{2}...\frac{100}{2}\)
Nên A=B
Vậy A=B
\(1.3.5.7...97.99=\frac{100!}{2.4.6.8...100}\)
\(=\frac{1.2.3.4...100}{1.2.2.2.3.2...50.2}\)
\(=\frac{51.52.53...100}{2}\)
Vậy \(A=B\)
Ta có:
\(D=\frac{51}{2}\cdot\frac{52}{2}\cdot\frac{53}{2}....\frac{100}{2}\)
\(=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.....50\right)}{2^{50}\left(1.2.3.....50\right)}\)
\(=\frac{1.2.3.....100}{\left(2.1\right)\left(2.2\right)\left(2.3\right).......\left(2.50\right)}\)
\(=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
= 1.3.5.....99 = C
Vậy C = D