K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2019

CÁC BẠN GIÚP MÌNH NHANH VỚI NHÉ! BẠN NÀO TRẢ LỜI ĐẦU TIÊN THÌ MÌNH SẼ K CHO!!!!!!!!!!

20 tháng 3 2019

So sánh :a)20172018 và20182019                                                  b)201,62017 và201,72018 c)20152019 và504505                                                      d)2x2018+12x2019+1 và2x2017+12x2018+1 e)2x2018+12x2019+1 và3x2018+13x2019+1                             f)223334 và22233334 

11 tháng 6 2018

Bài 1:

Ta có:

\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)

Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)

                                                     \(\Leftrightarrow N< M\)

Vậy \(M>N.\)

Bài 2:

Ta có:

\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)

\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)

\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)

                                                                     \(\Leftrightarrow A>B\)

Vậy \(A>B.\)

Bài 3:

\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)

                                                                \(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)

                                                                \(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)

Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)

\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm

\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)

Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)

Bài 4:

\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)

Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)

\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)

\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)

Vậy \(\frac{1991.1999}{1995.1995}< 1.\)

27 tháng 5 2019

Bài làm

c ) Ta có :

 \(\frac{2017}{2018}< 1\)

\(\frac{12}{11}>1\)

\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)

trả lời

a, quy đồng rồi so sánh 

b,quy đồng rồi so sánh 

c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn

d,quy đồng rồi so sánh

chắc vậy chúc bn học tốt

19 tháng 7 2018

a) ta có: \(A=\frac{2017.2018-1}{2017.2018}=\frac{2017.2018}{2017.2018}-\frac{1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

\(\Rightarrow\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

=> A < B

19 tháng 7 2018

a)A= 2017*2018/2017*2018-1/2017*2018=1-1/2017*2018

    B = 2018*2019/2018*2019-1/2018*2019=1-1/2018*2019

vì 1/2017*2018>1/2018*2019=> A<B

b)

Hai bài này bạn tính ra là xong mà

Cần gì phải hỏi

Dễ mà

13 tháng 8 2017

\(A< 4\)

\(B< 3\)

là đáp án đúng

25 tháng 5 2018

a) \(\left(2017\times2018+2018+2019\right)\times\left(1+\frac{1}{2}:1\frac{1}{2}-1\frac{1}{3}\right)\)

\(=\left(2017\times2018+2018+2019\right)\times\left(1+\frac{1}{2}:\frac{3}{2}-1\frac{1}{3}\right)\)

\(=\left(2017\times2018+2018+2019\right)\times\left(1+\frac{1}{3}-1\frac{1}{3}\right)\)

\(=\left(2017\times2018+2018+2019\right)\times0\)

\(=0\)

b) 10,11 + 11,12 + 12,13 + ...+ 98,99 + 99, 100

Số số hạng từ 10,11 đến 98,99 là:

( 98,99 - 10,11) : 1,01 + 1= 89

Tổng dãy số trên từ 10,11 đến 98,99 là:

( 98,99 + 10,11) x 89 : 2 = 4 854,95

=> 10,11 + 11,12+12,13 + ...+ 98,99+ 99,100 = 4 854,95 + 99, 1 = 4 954, 05

25 tháng 5 2018

a) ( 2017 * 2018 + 2018 +2019) * (1 + 1/2 : 1   1/2 - 1   1/3)

    ( 2017 * 2018 + 2018 +2019) * (1 + 1/2 : 3/2 -4/3)

    ( 2017 * 2018 + 2018 * 1 +2019) * (1 + 1/3 -4/3 )

   [ ( 2017 +1) * 2018 +2019)] * ( 4/3 - 4/3)

   ( 2018 * 2018 + 2019 )    *      0

  ( 4072324 + 2019)           *      0

    4074343                      *         0

= 0

  

   

2 tháng 9 2019

3.000000737

12 tháng 8 2019

 \(Ta\)có :\(a\)=\(\frac{2017\cdot2018-1}{2017.2018}\)=\(\frac{2017.2018}{2017.2018}\)-\(\frac{1}{2017.2018}\)=1-\(\frac{1}{2017.2018}\)

          \(b\)=\(\frac{2019.2020-1}{2019.2020}\)=\(\frac{2019.2020}{2019.2020}\)-\(\frac{1}{2019.2020}\)=1-\(\frac{1}{2019.2020}\)

Vì \(\frac{1}{2018.2019}\)\(\frac{1}{2019.2020}\)nên \(a\)\(b\)(sử dụng phần bù)

  

   

23 tháng 3 2023

so sánh a và b biết a=2017×2018−12017×20182017×20182017×20181và b =2019×2020−12019×20202019×20202019×20201