K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

\(A=\frac{10^2}{20^2}+\frac{20^2}{30^2}=\frac{25}{36}\)

\(B=\frac{10^2+20^2}{20^2+30^2}=\frac{5}{13}\)

ta đổi :\(\frac{25}{36}\)và \(\frac{5}{13}\)ra thành cùng mẫu

suy ra bằng \(\frac{325}{468}\)và \(\frac{180}{468}\)

vì \(\frac{325}{468}>\frac{180}{468}\)nên \(A>B\)

đúng thì nhớ k đấy nhé

12 tháng 4 2018
Trả lời nhanh nhất minh kick cho 1000000.....000 lần mình đang cần gấp
14 tháng 3 2018

Vì N<1

=> N= 20^31+2/20^32+2

<20^31+2+38/ 20^32+2+38

=20^31+40/ 20^32+40

=20.(20^30+2) / 20.(20^31+2)

=20^30+2 / 20^32+2 = M

Vậy N<M

14 tháng 3 2018

\(N=\frac{20^{31}+2}{20^{32}+2}=\frac{20^{31}+2+18}{20^{32}+2+18}=\frac{20^{31}+20}{20^{32}+20}=\frac{10.\left(20^{30}+2\right)}{10.\left(20^{31}+2\right)}\)\(=M\)

\(\Rightarrow M=N\)
 

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

2 tháng 5 2019

a) Ta có: \(A=\frac{2^{2017}}{2^{2017}}+\frac{2^{2016}}{2^{2017}}+\frac{2^{2015}}{2^{2017}}+...+\frac{2^1}{2^{2017}}+\frac{1}{2^{2017}}\)

\(=\frac{1+2^1+2^2+...+2^{2016}+2^{2017}}{2^{2017}}\)

Đặt: B=\(1+2^1+2^2+...+2^{2017}\)

\(\Leftrightarrow2B=2^1+2^2+2^3+....+2^{2017}+2^{2018}\)

\(\Leftrightarrow2B-B=2^{2018}-1\)

\(\Leftrightarrow B=2^{2018}-1\)

\(\Rightarrow A=\frac{B}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Mik chỉ biết làm phần a thôi

NV
3 tháng 5 2019

b/ Sử dụng quy tắc: \(\frac{a+c}{b+c}< \frac{a}{b}\) với \(\left\{{}\begin{matrix}a;b;c>0\\a>b\end{matrix}\right.\)

\(B=\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}\)

\(\Rightarrow B>A\)

2 tháng 5 2016

Ta có a/b >1 => a/b > a+n/b+n(a, b,n $\in$∈ N*)               

B = 2010-1/2010-3 > 1 nên B = 2010-1/2010-3 > 2010-1+2/2010-3+2  

   = 2010+1/ 2010-1 = A

Vay \(A=\frac{2^{10}+1}{20^{10}-1}<\frac{20^{10}-1}{20^{10}-3}\) 

25 tháng 3 2019

Bài 1:

\(A=\frac{3333}{101}\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{3333}{101}\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{3333}{101}\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{3333}{101}.\frac{4}{21}=\frac{1111.4}{101.7}=\frac{4444}{707}\)

Bài 2

\(A=\frac{2^{10}+1}{2^{10}-1}=\frac{2^{10}-1+2}{2^{10}-1}=1+\frac{2}{2^{10}-1}\)

\(B=\frac{2^{10}-1}{2^{10}-3}=\frac{2^{10}-3+4}{2^{10}-3}=1+\frac{4}{2^{10}-3}\)

Ta thấy \(2^{10}-1>2^{10}-3\Rightarrow\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}< \frac{4}{2^{10}-3}\)

Từ đó \(\Rightarrow1+\frac{2}{2^{10}-1}< 1+\frac{4}{2^{10}-3}\Rightarrow A< B\)

Bài 3\(P=\frac{\left(\frac{2}{3}-\frac{1}{4}\right)+\frac{5}{11}}{\frac{5}{12}+\left(1-\frac{7}{11}\right)}=\frac{\frac{5}{12}+\frac{5}{11}}{\frac{5}{12}+\frac{4}{11}}=\frac{\frac{55+60}{11.12}}{\frac{55+48}{12.11}}=\frac{115}{103}\)

12 tháng 6 2020

Bài 2 sai r bạn ơi

17 tháng 2 2020

Rút gọn biểu thức trên nha.

\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)

\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)

vậy M=20