K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2018

a) Vì a - 5 ≥ b - 5 => a - 5 + 5 ≥ b - 5 + 5

                          => a ≥ b 

b) Vì 15 + a ≤ 15 + b => 15 + a -15 ≤ 15 + b -15

                               => a ≤ b


 

a: \(\left(\sqrt{21}-\sqrt{5}\right)^2=26-2\sqrt{105}\)

\(\left(\sqrt{20}-\sqrt{6}\right)^2=26-2\sqrt{120}\)

mà \(-2\sqrt{105}>-2\sqrt{120}\)

nên \(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

b: \(\left(\sqrt{2}+\sqrt{8}\right)^2=10+2\cdot4=16=12+4\)

\(\left(3+\sqrt{3}\right)^2=12+6\sqrt{3}\)

mà \(4< 6\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{8}< 3+\sqrt{3}\)

27 tháng 11 2016

a)>

b)<

c)>

27 tháng 11 2016

a, >

b, <

c, >

a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)

\(7^2=49=7+42\)

mà \(15+2\sqrt{105}< 42\)

nên \(\sqrt{7}+\sqrt{15}< 7\)

b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)

\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)

mà \(2\sqrt{22}< 15+10\sqrt{3}\)

nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)

30 tháng 8 2016

a) Ta có \(\sqrt{170}>\sqrt{169}\\\)

mà \(\sqrt{169}=13\)

=> \(\sqrt{170}>13\)

b) Ta có \(\sqrt{6}< \sqrt{9}\)

mà \(\sqrt{9}=3\)

=> \(\sqrt{6}< 3\)

c) ta có \(\sqrt{226}>\sqrt{225}\)

mà \(\sqrt{225}=15\)

=>\(\sqrt{226}>15\)

d) \(\sqrt{12}>\sqrt{7}\)

e)

Ta có\(\sqrt{150}< \sqrt{180}\)

mà \(\sqrt{150}=5\sqrt{6}\)

\(\sqrt{180}=6\sqrt{5}\)

=> \(5\sqrt{6}< 6\sqrt{5}\)

26 tháng 7 2019

a) Ta có 290>289

<=>  \(\sqrt{290}\)   >       \(\sqrt{289}\)

<=>  \(\sqrt{290}\)   >        17

Vậy ..........

26 tháng 7 2019

\(a,290>289\)

\(\Rightarrow\sqrt{290}>\sqrt{289}\)

\(\Rightarrow\sqrt{290}>17\)

\(b,\sqrt{7}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 3+4\)

\(\Rightarrow\sqrt{7}+\sqrt{15}< 7\)

11 tháng 11 2017

kết bạn với nhau được không dương

12 tháng 11 2016

a) có \(\sqrt{2}\) <\(\sqrt{3}\)

5= \(\sqrt{25}\) >\(\sqrt{11}\)

=>\(\sqrt{2}+\sqrt{11}< \sqrt{3}+5\)

12 tháng 11 2016

b)có \(\sqrt{21}>\sqrt{20}\)

-\(\sqrt{5}\) >-\(\sqrt{6}\)

=>\(\sqrt{21}-\sqrt{5}>\sqrt{20}-\sqrt{6}\)

20 tháng 10 2017

a/ \(\sqrt{10}< \sqrt{16}=4\)

b/ \(\sqrt{40}>\sqrt{36}=4\)

c/ \(\sqrt{15}+\sqrt{24}< \sqrt{16}+\sqrt{25}=4+5=9\)

d/ \(3\sqrt{2}=\sqrt{18}< \sqrt{20}=2\sqrt{5}\)

20 tháng 10 2017


a) \(\sqrt{10}\)và 4
4 = \(\sqrt{16}\)
Do \(\sqrt{16}>\sqrt{10}\)nên \(4>\sqrt{10}\)
b) \(\sqrt{40}\)và 6
6 = \(\sqrt{36}\)
Do \(\sqrt{40}>\sqrt{36}\)nên\(\sqrt{40}>6\)