Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^{70}=\left(9^7\right)^{10}=\left(\left(3^2\right)^7\right)^{10}=\left(3^{14}\right)^{10}\)
\(8^{100}=\left(2^3\right)^{100}=\left(\left(2^3\right)^{10}\right)^{10}=\left(2^{30}\right)^{10}\)
\(2^{30}>\left(2^4\right)^7>\left(3^2\right)^7=3^{14}\)
\(\Rightarrow2^{30}>3^{14}\Leftrightarrow9^{70}< 8^{100}\)
\(9^{70}=\left(9^7\right)^{10}=4782969^{10}\)
\(8^{100}=\left(8^{10}\right)^{10}=1073741824^{10}\)
\(4782969< 1073741824\)
\(\Rightarrow9^{70}< 8^{100}\)
a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)
\(\Rightarrow\text{ }4^{100}< 2^{202}\)
b, \(3^0=1< 5^8\)
\(3^0< 5^8\)
c, \(\left(0,6\right)^0=1\)
\(\left(-0,9\right)^6=\left(0,9\right)^6\)
\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)
d,
e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)
\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)
Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)
a.ta có: \(3^{2009}\)
\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)
*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)
Vậy \(3^{2009}\) < \(9^{1005}\).
\(2^{50}=\left(2^5\right)^{10}=32^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}\)
Suy ra: 250 > 520
b)
\(9^{200}=\left(9^2\right)^{100}=81^{100}\)
Suy ra: 99100 > 81100
Ta có: \(2^{150}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=\left(3^2\right)^{50}=9^{50}\)
=>\(8^{50}< 9^{50}\)
=>\(2^{150}< 3^{100}\)
2100và 1030
2100=210.10=(210)10=102410
1030=103.10=(103)10=100010
1024 > 1000
=>102410 > 100010
=>2100>1030
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}=\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}=\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}< 1\)
Ta co :
2^150 =(2^3)^50 =8^50
3^100 = (3^2)^50 = 9^50
vi 8<9 hay 8^50 <9^50 vay 2^150 <3^100
Ta có:
\(2^{150}=2^{3.50}=\left(2^3\right)^{50}=8^{50}\)
\(3^{100}=3^{2.50}=\left(3^2\right)^{50}=9^{50}>8^{50}\)
\(\Rightarrow2^{150}< 3^{100}\)