K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2017

a) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)

Ta có: n / n + 3 = 1 - 1/n + 3

          n - 1 / n + 4 = 1 - 1/ n + 4

Mặt khác : 1 / n + 3 > 1 / n + 4  => 1 - 1 / n + 3 > 1 - n + 4

nên n / n + 3 > n - 1 / n + 4

 Vậy ...

b) Ko biết làm

c) n / 2n + 1 và 3n + 1 / 6n + 3

 Ta có: n / 2n + 1 = 1 - 1 / 2n +1

           3n + 1 / 6n + 3 = 3n + 1 / 2 . 3n + 3 = n + 1 / 2n + 3 = 1 - 1/ 2n + 3

Mặt khác: 1/2n + 1 > 1/2n +3 => 1 - 1/2n+1 > 1- 1/2n + 3

nên n / n +1 < 3n + 1/ 6n +2

Vậy ...

phần b ko biết làm nhưng k cho mink nha ! 

20 tháng 2 2016

a,   <                b, >                 c, không biết

em mới hoc lớp 4 thôi

a)Gọi ƯCLN (\(n+3;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+3\right)⋮d\Rightarrow2\left(n+3\right)⋮d\Rightarrow\left(2n+6\right)⋮d\\\left(2n+5\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(n+3;2n+5\))=1

\(\Rightarrow\frac{n+3}{2n+5}\)là phân số tối giản(đpcm)

b)Gọi ƯCLN (\(2n+9;3n+14\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+9\right)⋮d\Rightarrow3\left(2n+9\right)⋮d\Rightarrow\left(6n+27\right)⋮d\\\left(3n+14\right)⋮d\Rightarrow2\left(3n+14\right)⋮d\Rightarrow\left(6n+28\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+28\right)-\left(6n+27\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN (\(2n+9;3n+14\))=1

\(\Rightarrow\frac{2n+9}{3n+14}\) là phân số tối giản.(đpcm)

c)Gọi ƯCLN(\(6n+11;2n+5\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(6n+11\right)⋮d\\\left(2n+5\right)⋮d\Rightarrow3\left(2n+5\right)⋮d\Rightarrow\left(6n+15\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+15\right)-\left(6n+11\right)⋮d\)

\(\Rightarrow4⋮d\)

\(\left(6n+15\right);\left(6n+11\right)⋮̸2\)

\(\Rightarrow d=1\)

⇒ƯCLN(\(6n+11;2n+5\))=1

\(\Rightarrow\frac{6n+11}{2n+5}\)là phân số tối giản (đpcm)

d)Gọi ƯCLN(\(12n+1;30n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(12n+1\right)⋮d\Rightarrow5\left(12n+1\right)⋮d\Rightarrow\left(60n+5\right)⋮d\\\left(30n+2\right)⋮d\Rightarrow2\left(30n+2\right)⋮d\Rightarrow\left(60n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(12n+1;30n+2\))=1

\(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản (đpcm)

e)Gọi ƯCLN(\(21n+4;14n+3\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(21n+4\right)⋮d\Rightarrow2\left(21n+4\right)⋮d\Rightarrow\left(42n+8\right)⋮d\\\left(14n+3\right)⋮d\Rightarrow3\left(14n+3\right)⋮d\Rightarrow\left(42n+9\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(42n+9\right)-\left(42n+8\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(21n+4;14n+3\))=1

\(\Rightarrow\frac{21n+4}{14n+3}\)là phân số tối giản (đpcm)

f) Gọi ƯCLN(\(2n+3;n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(2n+3\right)⋮d\\\left(n+2\right)⋮d\Rightarrow2\left(n+2\right)⋮d\Rightarrow\left(2n+4\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+4\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(2n+3;n+2\))=1

\(\Rightarrow\frac{2n+3}{n+2}\)là phân số tối giản (đpcm)
g) Gọi ƯCLN(\(n+1;3n+2\))=d

\(\Rightarrow\left\{{}\begin{matrix}\left(n+1\right)⋮d\Rightarrow3\left(n+1\right)⋮d\Rightarrow\left(3n+3\right)⋮d\\\left(3n+2\right)⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+3\right)-\left(3n+2\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)

⇒ƯCLN(\(n+1;3n+2\))=1

\(\Rightarrow\frac{n+1}{3n+2}\) là phân số tối giản (đpcm)

11 tháng 3 2017

1)

gọi ƯC(3n-2,4n-3) là d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)

=>ƯC(3n-2,4n-3)={1;-1}

=>\(\frac{3n-2}{4n-3}\)là p/số tối giản

vậy...