Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì :
\(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
Nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(\Rightarrow\)\(A>B\)
Vậy \(A>B\)
Ta có: \(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
Vì \(\frac{2008}{2009}>\frac{2008}{2009+2010+2011}\)
\(\frac{2009}{2010}>\frac{2009}{2009+2010+2011}\)
\(\frac{2010}{2011}>\frac{2010}{2009+2010+2011}\)
nên \(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}>\frac{2008+2009+2010}{2009+2010+2011}\)
hay A > B
Vậy A > B
1.
\(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\left(\frac{1}{2^{100}}+\frac{1}{2^{100}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)
cứ làm như vậy ta được :
\(=1+1=2\)
2. Ta có :
\(\frac{2008+2009}{2009+2010}=\frac{2008}{2009+2010}+\frac{2009}{2009+2010}\)
vì \(\frac{2008}{2009}>\frac{2008}{2009+2010}\); \(\frac{2009}{2010}>\frac{2009}{2009+2010}\)
\(\Rightarrow\frac{2008}{2009}+\frac{2009}{2010}>\frac{2008+2009}{2009+2010}\)
ta thấy:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010}\)(1)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010}\)(2)
từ 1 và 2 cộng vế với vế ta dc \(\dfrac{2008}{2009}+\dfrac{2009}{2010}>\dfrac{2008}{2009+2010}+\dfrac{2009}{2009+2010}=\dfrac{2008+2009}{2009+2010}\)
chúc bạn học tốt ^^
\(B=\dfrac{2008+2009+2010}{2009+2010+2011}=\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)Ta có : \(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)\(=>\dfrac{2008}{2009}+\dfrac{2009}{2010}+\dfrac{2010}{2011}>\dfrac{2008+2009+2010}{2009+2010+2011}\)
Hay A > B
17A = \(\frac{17^{2009}+17}{17^{2009}+1}=1+\frac{16}{17^{2009}+1}\)
17B = \(\frac{17^{2010}+17}{17^{2010}+1}=1+\frac{16}{17^{2010}+1}\)
mà \(\frac{16}{17^{2009}+1}>\frac{16}{17^{2010}+1}\)
=> A > B
B < 17 ^ 2009 + 1 + 16 / 17^2010 + 1+16 = 17^2009 + 17 / 17^2010 + 17 = 17(17^2008 + 1) / 17(17^2009+1) = 17^2008 + 1 / 17^2009 + 1 =A
=> B < A
****** k mk nha!
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
B = \(\dfrac{2009^{2009}+1}{2009^{2010}+1}\)<\(\dfrac{2009^{2009}+1+2008}{2009^{2010}+1+2008}\)=\(\dfrac{2009^{2009}+2009}{2009^{2010}+2009}\)=\(\dfrac{2009.\left(2009^{2008}+1\right)}{2009.\left(2009^{2009}+1\right)}\)=\(\dfrac{2009^{2008}+1}{2009^{2019}+1}\)= A
Vậy A > B
Ta có :
\(2009A=\dfrac{2009^{2009}+2009}{2009^{2009}+1}=\dfrac{2009^{2009}+1+2008}{2009^{2009}+1}=\dfrac{2009^{2009}+1}{2009^{2009}+1}+\dfrac{2008}{2009^{2009}+1}=1+\dfrac{2008}{2009^{2009}+1}\)
\(2009B=\dfrac{2009^{2010}+2009}{2009^{2010}+1}=\dfrac{2009^{2010}+1+2008}{2010^{2010}+1}=\dfrac{2009^{2010}+1}{2009^{2010}+1}+\dfrac{2008}{2009^{2010}+1}=1+\dfrac{2008}{2009^{2010}}\)
\(\)Vì \(1+\dfrac{2008}{2009^{2009}+1}>1+\dfrac{2008}{2009^{2010}+1}\Rightarrow A>B\)
~ Học tốt ~
Giải chi tiết:
đầu tiên ta nhân chéo:
2009x2009=4.036.081 ta được phân số: \(\dfrac{4.036.081}{4.038.090}\)
2010x2009=4.038.090
rồi ta lại nhân chéo với phân số thứ :
2008x2010=4.036.080 ta được phân số:\(\dfrac{4.036.080}{4.038.090}\)
2009x2010=4.038.090
khi được phân số có mẫu số bằng nhau ta so sánh như bình thường với tử số:
\(\dfrac{\text{4.036.081}}{4.038.090}\) > \(\dfrac{\text{4.036.080 }}{4.038.090}\)