K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: \(10A=\dfrac{10^9+10}{10^9+1}=1+\dfrac{9}{10^9+1}\)

\(10B=\dfrac{10^{10}+10}{10^{10}+1}=1+\dfrac{9}{10^{10}+1}\)

Vì \(10^9+1< 10^{10}+1\)

nên \(\dfrac{9}{10^9+1}>\dfrac{9}{10^{10}+1}\)

=>\(1+\dfrac{9}{10^9+1}>1+\dfrac{9}{10^{10}+1}\)

=>10A>10B

=>A>B

9 tháng 2 2018

B=\(\dfrac{10^9+1}{10^{10}+1}< \dfrac{10^5+1+9}{10^{10}+1+9}=\dfrac{10^9+10}{10^{10}+10}=\dfrac{10.\left(10^8+1\right)}{10\left(10^9+1\right)}\)

= A

9 tháng 2 2018
https://i.imgur.com/yk4QDbh.jpg
13 tháng 3 2017

Ta có F < 1 nên

\(\dfrac{13580}{34569}< 1< \dfrac{13580+\left(-1\right)}{34569+\left(-1\right)}=\dfrac{13579}{34568}\)<\(\dfrac{13579}{34567}\)

Từ đó suy ra \(\dfrac{13580}{34569}< \dfrac{13579}{34567}\)hay\(\dfrac{13579}{34567}>\dfrac{13580}{34569}\)

Vậy E > F

13 tháng 3 2018

a,A<B

b,A,<B

c,A<B

13 tháng 3 2018

a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)

\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)

Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)

c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:

 \(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)

Vậy A < B

18 tháng 1 2024

Bạn kham khảo nhé!

18 tháng 1 2024

\(A=\dfrac{10^9+1}{10^{10}+1}>B=\dfrac{10^8+1}{10^9+1}\)

1 tháng 3 2019

\(\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)\(\left(a,b,m\in N\cdot\right)\)

Ta có:

\(B=\dfrac{10^9+1}{10^{10}+1}< 10\left(10^9< 10^{10}\right)\)

\(\Leftrightarrow B=\dfrac{10^9+1}{10^{10}+1}< \dfrac{10^9+1+9}{10^{10}+1+9}=\dfrac{10^9+10}{10^{10}+10}=\dfrac{10\left(10^8+1\right)}{10\left(10^9+1\right)}=\dfrac{10^8+1}{10^9+1}=A\)

\(\Leftrightarrow A>B\)

b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)

\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)

mà \(10^7-8< 10^8-7\)

nên A>B

c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)

\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)

mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)

nên A<B

20 tháng 3 2017

d, Vì B=10^1993+1/10^1992+1 > 1 =>10^1993+1/10^1992+1>10^1993+1+9/10^1992+1+9 = 10^1993+10/10^1992+10= 10. (10^1992+1)/10. (10^1991+1) = 10^1992+1/10^1991+1=A Vậy A=B

cau d B>1 ta co tinh chat (\(\dfrac{a}{b}>\dfrac{a+m}{b+m}\) ) B> \(\dfrac{10^{1993}+1+9}{10^{1992}+1+9}\)\(=\dfrac{10^{1993}+10}{10^{1992}+10}\)=\(\dfrac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\dfrac{10^{1992}+1}{10^{1991}+1}\)=A

Suy ra B>A(chuc ban hoc goi nhe)

12 tháng 4 2017

\(A=\dfrac{8^9+13}{8^9+7}=\dfrac{8^9+7+6}{8^9+7}=1+\dfrac{6}{8^9+7}\)

\(B=\dfrac{8^{10}-1+5}{8^{10}-1}=1+\dfrac{5}{8^{10}-1}\)

\(1+\dfrac{6}{8^9+7}>1+\dfrac{5}{8^{10}-1}\) \(\Rightarrow A>B\)

12 tháng 4 2017

hình như sai đề bạn ơi

6 tháng 4 2017

đề kêu là gì zậy ?

6 tháng 4 2017

Ta có:

\(10A=10.\dfrac{10^7+1}{10^8+1}=\dfrac{10.10^7+1}{10^8+1}=\dfrac{10^8+1}{10^8+1}=1\)

\(10B=\dfrac{10.10^8+1}{10^9+1}=\dfrac{10^9+1}{10^9+1}=1\)

\(\Rightarrow10A=10B\)

\(\Rightarrow A=B\)