Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so sánh : 1999×1999 / 1995×1995 vs 1
ta thấy 1999>1995
=>1999×1999 / 1995×1995 > 1
phần tiếp theo tương tự
1999 > 1995
Vậy suy ra ta có :
\(1999\times\frac{1999}{1995}\times1995\)
\(=3996001\)
Vậy là : 39996001 > 1
\(\frac{1999x1999}{1995x1995}>1\)
\(\frac{198519851985x198719871987}{198619861986x198119861986}< 1\)
Chúc bn học tốt
a)
\(1-\frac{1998}{1999}=\frac{1}{1999}\)
\(1-\frac{1999}{2000}=\frac{1}{2000}\)
Vì \(\frac{1}{1999}>\frac{1}{2000}\)nên \(\frac{1998}{1999}< \frac{1999}{2000}\)
b) Ta có :
\(\frac{1999}{2001}< 1\)
\(\frac{12}{11}>1\)
Nên \(\frac{1999}{2001}< \frac{12}{11}\)
c)
\(1-\frac{13}{27}=\frac{14}{27}\)
\(1-\frac{27}{41}=\frac{14}{41}\)
Vì \(\frac{14}{27}>\frac{14}{41}\)nên \(\frac{13}{27}< \frac{27}{41}\)
d)
Ta có phân số trung gian là \(\frac{23}{45}\).
Ta có : \(\frac{23}{47}< \frac{23}{45}\) ; \(\frac{24}{45}>\frac{23}{45}\)
Nên \(\frac{23}{47}< \frac{24}{45}\)
a) Ta có : a + 1 > a - 1
=> \(\frac{1}{a+1}\) < \(\frac{1}{a-1}\)
a) \(\frac{1}{a+1}< \frac{1}{a}< \frac{1}{a-1}\Rightarrow\frac{1}{a+1}< \frac{1}{a-1}\)
b) \(\frac{23}{47}< \frac{23}{45}< \frac{24}{45}\Rightarrow\frac{23}{47}< \frac{24}{45}\)
c) \(\frac{12}{17}>\frac{1}{2}>\frac{7}{15}\Rightarrow\frac{12}{17}>\frac{7}{15}\)
d) \(\frac{34}{43}< \frac{35}{43}< \frac{35}{42}\Rightarrow\frac{34}{43}< \frac{35}{42}\)
A = 1991x 1999 = (1995-4) x 1999 = 1995x1999-4x1999
B = 1995x1995 = 1995 x (1999-4)=1995=1999-1995x4>1995x1999-4x1999=A
vậy A<B
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Ta có :
\(\frac{1991.1999}{1995.1995}=\frac{1991.1995+1991.4}{1991.1995+1995.4}\)
Rõ ràng \(\frac{1991.1995+1991.4}{1991.1995+1995.4}< 1\)vì\(1991.1995+1991.4>1991.1995+1995.4\)
vì cả 2 vế đều có 2 số giống nhau mà 35>34 suy ra 34*34<35*35
tích cho tôi nha
Ta có \(1999>1995\)
\(\Rightarrow1999\times1999>1995\times1995\)
\(\Rightarrow\frac{1999\times1999}{1995\times1995}>1\)
\(\frac{1999.1999}{1995.1995}\)=....
=> nếu nhân ra bằng\(\frac{3996001}{3980025}\)thì \(\frac{3996001}{3980025}\)>1
=> vì tử lớn hơn mẫu nên 1 <\(\frac{3996001}{3980025}\)
hok tốt
a)\(\frac{34\cdot34}{33\cdot35}=\frac{34\cdot34}{\left(34-1\right)\left(34+1\right)}=\frac{34\cdot34}{34\cdot34-1}>1\)
b) \(\frac{1999\cdot1999}{1995\cdot1995}=\frac{1999}{1995}\times\frac{1999}{1995}< 1\times1=1\)
c) \(\frac{198519851985\cdot198719871987}{198619861986\cdot198619861986}=\frac{1985\cdot1001001001\times1987\cdot1001001001}{1986\cdot1001001001\times1986\cdot1001001001}\)
\(=\frac{1985\cdot1987}{1986\cdot1986}=\frac{1986\cdot1986-1}{1986\cdot1986}< 1\)