Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)
\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)
\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)
Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó :
\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)
\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Chúc bạn học tốt ~
PS : tự nghĩ bừa thui nhé :))
Đặt \(S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)
Biến đổi mẫu
\(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)
\(=\left(2017+1\right)+\left(\frac{2016}{2}+1\right)+...+\left(\frac{1}{2017}+1\right)-2017\)
\(=2018+\frac{2018}{2}+...+\frac{2018}{2017}+\frac{2018}{2018}-2018\)
\(=2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}=\frac{1}{2018}\)
A = 1.2+2.3+...+2016.2017
3A=1.2.3 + 2.3.(4-1) + .. + 2016.2017.(2018-2015)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 2016.2017.2018 - 2015.2016.2017
3A = 2016.2017.2018
A = 2016.2017.2018 : 3
A = 2735245632
3A=1*2*3+2*3*(4-1)+.........+2016*2017.(2018-2015)
3A=1.2.3-1.2.3+2.3.4-2.3.4+.........+2016.2017.3
3A=2016.2017.2018
KẾT QUẢ TỰ TÍNH
\(\left(\dfrac{2016}{2017}-\dfrac{3}{2015}\right)\div\left(\dfrac{-2}{3}\right)-\left(\dfrac{2012}{2015}-\dfrac{1}{2017}\right)\div\left(\dfrac{-2}{3}\right)\)
\(=\left[\left(\dfrac{2016}{2017}-\dfrac{3}{2015}\right)-\left(\dfrac{2012}{2015}-\dfrac{1}{2017}\right)\right]\div\left(\dfrac{-2}{3}\right)\)
\(=\left(\dfrac{2016}{2017}-\dfrac{3}{2015}-\dfrac{2012}{2015}+\dfrac{1}{2017}\right)\div\left(\dfrac{-2}{3}\right)\)
\(=\left[\left(\dfrac{2016}{2017}+\dfrac{1}{2017}\right)+\left(-\dfrac{3}{2015}-\dfrac{2012}{2015}\right)\right]\div\left(\dfrac{-2}{3}\right)\)
\(=\left[1+\left(-1\right)\right]\div\left(\dfrac{-2}{3}\right)\)
\(=0\div\left(\dfrac{-2}{3}\right)=0\)
mình có gì sai sót xin bạn thông cảm cho
\(M=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}+\dfrac{1}{2017}\)
\(M=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2017}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2016}\right)\)\(M=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2008}\right)\)
\(M=\dfrac{1}{2009}+\dfrac{1}{2010}+...+\dfrac{1}{2016}+\dfrac{1}{2017}=N\)
Vậy \(\left(M-N\right)^{2017}=0\)