K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)Ta thấy:

\(\dfrac{2010}{2011}>\dfrac{2010}{2011+2012+2013}\\ \dfrac{2011}{2012}>\dfrac{2011}{2011+2012+2013}\\ \dfrac{2012}{2013}>\dfrac{2012}{2011+2012+2013}\\ \Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\\ \Leftrightarrow P>Q\)

Vậy \(P>Q\)

17 tháng 5 2022

\(Q=\dfrac{2010+2011+2012}{2011+2012+2013}=\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)

Ta có: \(\dfrac{2010}{2011+2012+2013}< \dfrac{2010}{2011}\)

           \(\dfrac{2011}{2011+2012+2013}< \dfrac{2011}{2012}\)

           \(\dfrac{2012}{2011< 2012< 2013}< \dfrac{2012}{2013}\)

\(\Rightarrow\dfrac{2010}{2011+2012+2013}+\dfrac{2011}{2011+2012+2013}+\dfrac{2012}{2011+2012+2013}\)

\(\dfrac{2010}{2011}+\dfrac{2011}{2012}+\dfrac{2012}{2013}\)

\(P>Q\)

17 tháng 3 2019

\(\frac{2010}{2011}\)\(\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}\)\(\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}\)\(\frac{2012}{2011+2012+2013}\)

=> \(\frac{2010}{2011}\)\(\frac{2011}{2012}\)\(\frac{2012}{2013}\)\(\frac{2010+2011+2012}{2011+2012+2013}\)

=> P > Q

14 tháng 6 2015

bạn tham khảo:

2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013

14 tháng 6 2015

2010/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2011/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

2012/2011+2012+2013 > 2010+2011+2012/2011+2012+2013

=> 2010/2011+2011/2012+2012/2013 > 2010+2011+2012/2011+2012+2013

2 tháng 4 2017

Ta có:

\(A=\dfrac{2010}{2011}+\dfrac{2011}{2012}\)

\(B=\dfrac{2010+2011}{2011+2012}\)

\(=\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Áp dụng tính chất \(\dfrac{a}{b}>\dfrac{a}{b+m}\) ta có:

\(\left\{{}\begin{matrix}\dfrac{2010}{2011}>\dfrac{2010}{2011+2012}\\\dfrac{2011}{2012}>\dfrac{2011}{2011+2012}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010}{2011+2012}+\dfrac{2011}{2011+2012}\)

Hay \(\dfrac{2010}{2011}+\dfrac{2011}{2012}>\dfrac{2010+2011}{2011+2012}\)

Vậy \(A>B\)

3 tháng 9 2016

\(P=\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

\(P>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

\(P>\frac{2010+2011+2012}{2011+2012+2013}\)

\(P>Q\)

20 tháng 4 2016

P > Q  không phải toán lớp 6

20 tháng 4 2016

P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

     \(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

     \(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

 => \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

                    P                         >                                         Q

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????