K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(12>9\)

\(6\sqrt{3}>4\sqrt{5}\)

Do đó: \(12+6\sqrt{3}>9+4\sqrt{5}\)

\(\Leftrightarrow\sqrt{12+6\sqrt{3}}>\sqrt{9+4\sqrt{5}}\)

5 tháng 12 2021

Ta có: √12+6√3 = √9+6√3+√3

=3+√3 (1)ta co√9+4√5=√5+2 (2)từ (1) và (2) ta co√12+6√3>√9+4√5 
29 tháng 1 2022

a) Có \(\sqrt{2}< \sqrt{2,25}=1,5\)

\(\sqrt{6}< \sqrt{6,25}=2,5\)

\(\sqrt{12}< \sqrt{12,25}=3,5\)

\(\sqrt{20}< \sqrt{20,25}=4,5\)

=> \(P=\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}< 1,5+2,5+3,5+4,5=12\)

Vậy P < 12

30 tháng 1 2022

Answer:

ý a, tham khảo bài làm của @xyzquynhdi

\(\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)

\(=\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+\left(\sqrt{3}\right)^2+\left(\sqrt{5}\right)^2+2\sqrt{2}\sqrt{3}+2\sqrt{2}\sqrt{5}+2\sqrt{3}\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=\sqrt{2}+\sqrt{3}+\sqrt{5}\)

23 tháng 4 2017

a. Ta có : \(\sqrt{8}< \sqrt{9}\) ( vì 8< 9)

hay \(2\sqrt{2}< 3\)

\(\Rightarrow\) \(2\sqrt{2}+6< 3+6\)

hay \(2\sqrt{2}+6< 9\)

b. Ta có : \(\sqrt{6}>\sqrt{4}\) (vì 6 > 4 )

hay \(\sqrt{2.3}>2\)

\(\Rightarrow\) 2\(\sqrt{2.3}\) > 4

\(\Rightarrow\) 2 + \(2\sqrt{2.3}\) + 3 > 9

hay \(\left(\sqrt{2}+\sqrt{3}\right)^2\)> 9

\(\Rightarrow\) \(\sqrt{2}+\sqrt{3}>3\)

c. Ta có: \(\sqrt{80}>\sqrt{49}\) (vì 80>49)

hay \(4\sqrt{5}\) > 7

\(\Rightarrow\) 9 + \(4\sqrt{5}\) > 16

d. Ta có : \(2\sqrt{33}>2\sqrt{25}\) (vì 33> 25 ) hay \(2\sqrt{23}>2.5\)

\(\Rightarrow\) - \(2\sqrt{33}\) < - 2.5

\(\Rightarrow\) 11 - \(2\sqrt{11.3}\) +3 < 11- 2.5 +3

hay \(\left(\sqrt{11}-\sqrt{3}\right)^2\) < 4

\(\Rightarrow\) \(\sqrt{11}-\sqrt{3}< 2\)

30 tháng 7 2019

mẹo để làm bài nay là j hả bn

9 tháng 7 2018

Ta có:\(4\sqrt{5}-\sqrt{26}=\sqrt{16}.\sqrt{5}-\sqrt{26}\)

\(=\sqrt{80}-\sqrt{26}\)

\(< \sqrt{81}-\sqrt{26}< \sqrt{81}-\sqrt{25}\)

\(=9-5=4\)

Vậy \(4>4\sqrt{5}-\sqrt{26}\)

23 tháng 11 2019

Ta có:

\(\left(\sqrt{3+\sqrt{20}}\right)^2-\left(\sqrt{5+\sqrt{5}}\right)^2\)

\(=3+\sqrt{20}-5-\sqrt{5}\)

\(=-2+2\sqrt{5}-\sqrt{5}\)

\(=-2+\sqrt{5}\)

 Ta thấy: \(5>4\Rightarrow\sqrt{5}>\sqrt{4}\Rightarrow\sqrt{5}>2\)

Do đó : hiệu trên >0

Suy ra : \(\sqrt{3+\sqrt{20}}>\sqrt{5+\sqrt{5}}\)