Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)
\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)
\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)
\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)
Vậy...
A và B khi tính ra sẽ ra số rất lớn ko thể so sánh vì vậy
ta lấy số mũ :
_ A sẽ có số mũ là 2001 và 2002
_ B sẽ có số mũ là 2001 và 2000
A và B sẽ có 2001 = 2001 còn 2002 > 2000
=> A > B
chúc bạn học giỏi
Ta có: \(\frac{1999x2000}{1999x2000+1}=\frac{1999x2000+1-1}{1999x2000+1}=1-\frac{1}{1999x2000+1}\)
\(\frac{2000x2001}{2000x2001+1}=\frac{2000x2001+1-1}{2000x2001+1}=1-\frac{1}{2000x2001+1}\)
Nhận thấy: \(\frac{1}{1999x2000+1}>\frac{1}{2000x2001+1}\)=> \(1-\frac{1}{1999x2000+1}< 1-\frac{1}{2000x2001+1}\)
=> \(\frac{1999x2000}{1999x2000+1}=\frac{2000x2001}{2000x2001+1}\)
\(\frac{1999x2000}{1999x2000+1}< \frac{2000x2001}{2000x2001+1}\)
\(Tagọi\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
là A
=> a>0
ta thấy \(\frac{1}{5}\)+ a sẽ lớn hơn \(\frac{1}{5}\)(vì a>0)
=> đpcm