K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

Có:\(\sqrt{2005}-\sqrt{2004}=\frac{2005-2004}{\sqrt{2005}+\sqrt{2004}}=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

;\(\sqrt{2004}-\sqrt{2003}=\frac{2004-2003}{\sqrt{2004}+\sqrt{2003}}=\frac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2005}+\sqrt{2004}>\sqrt{2004}+\sqrt{2003}\)\(\Rightarrow\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

14 tháng 6 2017

Ta có

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004+\sqrt{2003}}}\)

Quy về so sánh

\(\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\) với \(\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

Khi đó ,ta thấy ngay ở biểu thức thứ nhất lớn hơn mẫu ở biểu thức thứ hai ,các số này đều dương nên suy ra

\(\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)

27 tháng 6 2017

kết quả hơi kì bạn ơi

23 tháng 4 2017

Đặt A = \(\sqrt{ }\)2003 + \(\sqrt{ }\)2005 ; B = 2\(\sqrt{ }\)2004
A² = 2003 + 2005 + 2\(\sqrt{ }\)(2003.2005)
= 4008 + 2\(\sqrt{ }\)[(2004-1)(2004+1)]
= 4008 + 2\(\sqrt{ }\)(2004² - 1) < 2.2004 + 2\(\sqrt{ }\)(2004²) = 4.2004 = B²
\(\Rightarrow\) A < B

23 tháng 4 2017

Ta có: \(2\sqrt{2003.2005}=2\sqrt{2004^2-1}< 2\sqrt{2004^2}\)

\(\Rightarrow\) 2003 + \(2\sqrt{2003.2005}+2005\) < 2003 + 4008 + 2005

hay \(\left(\sqrt{2003}+\sqrt{2005}\right)^2< 8016\)

\(\Rightarrow\) \(\sqrt{2003}+\sqrt{2005}\) < 2 \(\sqrt{2004}\)

14 tháng 8 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m) với a = 2003 , b = 2005

được : \(\frac{\sqrt{2003}+\sqrt{2005}}{2}< \sqrt{\frac{2003+2005}{2}}\)

\(\Rightarrow\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

19 tháng 7 2019

a ) \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{10}\)

Ta có : \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+3+2\sqrt{6}=5+2\sqrt{6}\)\(=5+\sqrt{24}\)

            \(\left(\sqrt{10}\right)^2=10=5+5=5+\sqrt{25}\)

Vì \(\sqrt{24}< \sqrt{25}\Rightarrow5+\sqrt{24}< 5+\sqrt{25}\)hay \(\sqrt{2}+\sqrt{3}< \sqrt{10}\)

19 tháng 7 2019

b ) \(\sqrt{2003}+\sqrt{2005}\) và \(2\sqrt{2004}\)

Ta có : \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=2003+2005+2\sqrt{2003.2005}\)

                                                                \(=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)

                                                                \(=4008+2\sqrt{2004^2-1}\)

            \(\left(2\sqrt{2004}\right)^2=4.2004=2.2004+2\sqrt{2004^2}\)\(=4008+2\sqrt{2004^2}\)

Vì \(4008+2\sqrt{2004^2-1}< 4008+2\sqrt{2004^2}\)=> \(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

c ) \(\sqrt{5\sqrt{3}}\)và \(\sqrt{3\sqrt{5}}\)

Ta có : \(\sqrt{5\sqrt{3}}=\sqrt{\sqrt{5^2.3}}=\sqrt{\sqrt{75}}\)

           \(\sqrt{3\sqrt{5}}=\sqrt{\sqrt{3^2.5}}=\sqrt{\sqrt{45}}\)

Vì 75 > 45 => \(\sqrt{75}>\sqrt{45}\)hay \(\sqrt{5\sqrt{3}}>\sqrt{3\sqrt{5}}\)

7 tháng 9 2017

Đặt A = \(\sqrt{2003}+\sqrt{2005}\)

B = \(2\sqrt{2004}\)

\(\Rightarrow A^2=2003+2005+2\sqrt{\left(2003.2005\right)}=4008+2\sqrt{\left(2004-1\right)\left(2004+1\right)}\)

\(=4008+2\sqrt{\left(2004^2-1\right)}\)

\(\Rightarrow B^2=4.2004=2.2004+2.2004=4008+2\sqrt{2004^2}\)

mà \(\sqrt{2004^2>\sqrt{ }2004^2-1}\)

\(\Rightarrow B^2>A^2\Rightarrow B>A\Rightarrow2\sqrt{2004}>\sqrt{2003}+\sqrt{2005}\)

Nhớ k cho mình nhé! Thank you!!!

7 tháng 9 2017

cần lắm một người nào đó giúp mình,hạn chót là ngày mai rồi

15 tháng 1 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

27 tháng 5 2017

a) \(2\sqrt[3]{3}=\sqrt[3]{2^3}.\sqrt[3]{3}=\sqrt[3]{2^3.3}=\sqrt[3]{24}\)

Ta có : \(24>23\), nên \(\sqrt[3]{24}>\sqrt[3]{23}\)

Vậy \(2\sqrt[3]{3}>\sqrt[3]{23}\)

b) Ta có :

\(11=\sqrt[3]{11^3}=\sqrt[3]{1331}\)

Từ đó suy ra \(33< 3\sqrt[3]{1333}\)

22 tháng 10 2017

Ta có : \(\sqrt{2005}-\sqrt{2004}\) ; \(\sqrt{2004}-\sqrt{2003}\)

=> \(\sqrt{2005}>\sqrt{2004}>\sqrt{2003}\)

=> \(\sqrt{2005}-\sqrt{2004}\)\(\sqrt{2004}-\sqrt{2003}\)

13 tháng 2 2020

\(\sqrt{2005}-\sqrt{2004}=0.01116778328\)

\(\sqrt{2004}-\sqrt{2003}=0.01117057\)

\(\Rightarrow\sqrt{2005}-\sqrt{2004}>\sqrt{2004}-\sqrt{2003}\)

20 tháng 7 2018

Bài này ta dùng phương pháp trục căn thức ở mẫu 

Ta có: \(\frac{1}{a}=\frac{1}{\sqrt{2004}-\sqrt{2003}}=\frac{\sqrt{2004}+\sqrt{2003}}{\left(\sqrt{2004}-\sqrt{2003}\right)\left(\sqrt{2004}+\sqrt{2003}\right)}\)

 \(=\frac{\sqrt{2004}+\sqrt{2003}}{2004-2003}=\frac{\sqrt{2004}+\sqrt{2003}}{1}=\sqrt{2004}+\sqrt{2003}\)

Tương tự: 1/b = căn 2005 + căn 2004

Vì căn 2004 + căn 2003 < căn 2005 + căn 2004

=> căn 2004 - căn 2003 > căn 2005 - căn 2004

Vậy a > b

P/s: Bài giải còn nhiều sai sót, mong các anh chị thông cảm và sửa cho em.