K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

777888 = 7778.111 = ( 7778)111 

888777 = 8887.111 = ( 8887)111 

Roy tự so sánh đi! 

8 tháng 6 2015

999888< 888999

29 tháng 9 2016

Ko biết

29 tháng 9 2016

có \(777^{333}=\left(7.111\right)^{333}=7^{333}.111^{333}=7^{3.111}.111^{333}=\left(7^3\right)^{111}.111^{333}=343^{111}.111^{333}\)

mà \(333^{777}=\left(3.111\right)^{777}=3^{777}.111^{777}=\left(3^7\right)^{111}.111^{777}=2187^{111}.111^{777}\)

ta thấy \(343^{111}< 2187^{111},111^{333}< 111^{777}\)

=> \(343^{111}.111^{333}< 2187^{111}.111^{777}\)=> \(333^{777}< 777^{333}\)

vậy...

18 tháng 10 2017

\(777^{333}=7^{333}.111^{333}=\left(7^3\right)^{111}.111^{333}=343^{111}.111^{333}\)

\(333^{777}=3^{777}.111^{777}=\left(3^7\right)^{111}.111^{777}=2187^{111}.111^{777}\)

Vì \(343^{111}< 2187^{111};111^{333}< 111^{777}\Rightarrow777^{333}< 333^{777}\)

18 tháng 10 2017

Ta có: \(777^{333}=\left(777^3\right)^{111}=\left[\left(7.111\right)^3\right]^{111}=\left[7^3.111^3\right]^{111}\)

\(=\left[343.111^3\right]^{111}\)

\(333^{777}=\left(333^7\right)^{111}=\left[\left(3.111\right)^7\right]^{111}=\left[3^7.111^7\right]^{111}=\left(2187.111^7\right)^{111}\)

\(343.111^3< 2187.111^7\Rightarrow777^3< 333^7\)

10 tháng 10 2020

222777  > 777222

10 tháng 10 2020

Ta có 222777=2777.111777=(27)111.111777=128111.111777

          777222=7222.111222=(72)111.111777=79111.111222

VÌ 128111.111777>79111.111222 

nên 222777>777222

CHÚC BẠN HỌC TỐT !!!!!!

12 tháng 10 2017

999888 > 888999

Đs....

12 tháng 10 2017

 999888 > 888999

Chúc bạn học giỏi

28 tháng 10 2015

oh my god . Tôi đi vào bệnh viện đầy 

5 tháng 12 2017

Ta có: \(222^{777}=2^{777}.111^{777}=\left(2^7\right)^{111}.111^{777}=128^{111}.111^{777}\)

\(777^{222}=7^{222}.111^{222}=\left(7^2\right)^{111}.111^{222}=49^{111}.111^{222}\)

\(\Rightarrow222^{777}\)lớn hơn \(777^{222}\)

5 tháng 12 2017

222777>777222

AH
Akai Haruma
Giáo viên
23 tháng 6 2024

Lời giải:

$\frac{555^{777}}{777^{555}}=\frac{111^{777}.5^{777}}{111^{555}.7^{555}}$

$=111^{222}.(\frac{5^7}{7^5})^{111}$

$=111^{222}.(\frac{78125}{16807})^{111}>1$

$\Rightarrow 555^{777}> 777^{555}$