Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot...\cdot\dfrac{98}{99}\)
\(A< \dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{99}{100}\)
\(\Rightarrow A^2< \dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{98}{99}\cdot\dfrac{99}{100}\)
\(A^2< \dfrac{2}{100}=\dfrac{1}{50}\)
Mà \(\dfrac{1}{50}< \dfrac{1}{49}\)
\(\Rightarrow A^2< \dfrac{1}{49}\)
\(\Rightarrow A< \dfrac{1}{7}\left(đpcm\right)\)
a: \(=\dfrac{-12}{7}\left(\dfrac{4}{35}+\dfrac{31}{35}\right)-\dfrac{2}{7}=\dfrac{-12}{7}-\dfrac{2}{7}=-2\)
b: =(-4)+(-4)+...+(-4)
=-4*25=-100
c: \(=157\cdot\left(-37\right)-41\cdot53+37\cdot157+51\cdot53\)
=10*53
=530
b)Ta có :
\(A=1.3.5...........99\)
\(\Rightarrow A=\dfrac{\left(1.3.7.9.............99\right)\left(2.4.6.8........100\right)}{2.4.6.8.............100}\)
\(\Rightarrow A=\dfrac{1.2.3.4.............100}{2.4.6.8................100}\)
\(\Rightarrow A=\dfrac{1.2.3.4..................100}{\left(2.1\right)\left(2.2\right)...............\left(2.50\right)}\)
\(\Rightarrow A=\dfrac{51.52.53...........................100}{2.2.2.2.............................2}\)
\(\Rightarrow A=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}.............\dfrac{100}{2}\)
\(\Rightarrow A=D\)
~ Chúc bn học tốt ~
mk hỏi này sao mà 1.2.3.4.....100/(2.1).(2.2)...(2.50)lại =51.52.53..........100/2.2.2........2
a) Ta có
S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)
S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)
b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(2-\dfrac{1}{99}\)
A = \(\dfrac{197}{99}\)
c) Ta có
B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B = \(1-\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
d) Ta có
C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)
C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)
C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))
Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{99}\)
D = \(\dfrac{97}{198}\)
=> C = 51 + 100.\(\dfrac{97}{198}\)
C = 51 + \(\dfrac{4850}{99}\)
C = \(\dfrac{9899}{99}\)
Đây là bài làm của mình sai thì nx nha
Theo phương pháp so sánh hai phân số có cùng mẫu số mà chúng ta đã
được học thì bạn Liên giải thích đúng, còn Oanh giải thích sai.
Ví dụ cho thấy bạn Oanh sai : hai phân số 3/8 và 1/2 có 3 lớn hơn 1 còn 8
lớn hơn 2 nhưng 3/8 nhỏ hơn 1/2 vì khi quy đồng về mẫu số chung là 8 thì
ta có: \(\dfrac{1}{2}=\dfrac{4}{8}>\dfrac{3}{8}\)
1) \(x+\dfrac{30}{100}x=-1,31\)
\(\Leftrightarrow x+\dfrac{3}{10}x=-\dfrac{131}{100}\)
\(\Leftrightarrow100x+30x=-131\)
\(\Leftrightarrow130x=-131\)
\(\Leftrightarrow x=-\dfrac{131}{130}\)
Vậy \(x=-\dfrac{131}{130}\)
b) \(\left(4,5-2x\right)\cdot\left(-1\dfrac{4}{7}\right)=\dfrac{11}{4}\)
\(\Leftrightarrow\left(\dfrac{9}{2}-2x\right)\cdot\left(-\dfrac{4}{7}\right)=\dfrac{11}{4}\)
\(\Leftrightarrow-\dfrac{18}{7}+\dfrac{8}{7}x=\dfrac{11}{4}\)
\(\Leftrightarrow-72+32x=77\)
\(\Leftrightarrow32x=77+72\)
\(\Leftrightarrow32x=149\)
\(\Leftrightarrow x=\dfrac{149}{32}\)
Vậy \(x=\dfrac{149}{32}\)
Hướng dẫn + lời giải
\(A=-1-2+3+4+..-2013-2014+2015+2016\)
A có 2016 số hạng
quy luật (2 trừ đến 2 cộng)
A chia hết cho 4 =>ghép 4 số hạng
\(B=\left(-1-2+3+4\right)+\left(-5-6+7+8\right)+...+\left(-2013-2014+2015+2016\right)\\ \)
\(C=4+4+4+...+4\)
số số hạng của C số số hạng của A chia 4
\(\dfrac{2016}{4}=504\)
Vậy C=4.504=2016
mình cố tình đặt A,B,C để bạn dẽ hiểu bản chất nó vẫn là A
bài có n! cách làm
cách này hứơng bạn đi đến cái tổng quát --> có thể làm được toán lớp 11
b) \(\dfrac{5-\dfrac{5}{3}+\dfrac{5}{9}-\dfrac{5}{27}}{8-\dfrac{8}{3}+\dfrac{8}{9}-\dfrac{8}{27}}=\dfrac{5\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}{8\left(1-\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{27}\right)}=\dfrac{5}{8}\)
Vì không có thời gian nên mình chỉ làm câu khó nhất thôi, tick mình nhé
\(7A=\dfrac{7^{100}+14}{7^{100}+2}=1+\dfrac{12}{7^{100}+2}\)
\(7B=\dfrac{7^{99}+14}{7^{99}+2}=1+\dfrac{12}{7^{99}+2}\)
7^100+2>7^99+2
=>7A<7B
=>A<B