K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2019

 thấy B/A

 lớn hơn 1 .Vây  B

 lớn hơn A

10 tháng 5 2019

\(A=\frac{10^9+5}{10^9-2}\)                                                                                                                                    
\(=\frac{10^9-2}{10^9-2}+\frac{7}{10^9-2}\)

\(=1+\frac{7}{10^9-2}\)

\(B=\frac{10^9}{10^9-7}\)

\(=\frac{10^9-7}{10^9-7}+\frac{7}{10^9-7}\)

\(=1+\frac{7}{10^9-7}\)

\(7\over10^9-5\)<\(7\over10^9-7\) nên A<B

26 tháng 7 2018

a )  Ta có : 

\(\frac{9^{10}-4}{9^{10}-5}=\frac{9^{10}-5+1}{9^{10}-5}=1+\frac{1}{9^{10}-5}\)

\(\frac{9^{10}-2}{9^{10}-3}=\frac{9^{10}-3+1}{9^{10}-3}=1+\frac{1}{9^{10}-3}\)

Do \(\frac{1}{9^{10}-5}>\frac{1}{9^{10}-3}\)

\(\Rightarrow1+\frac{1}{9^{10}-5}>1+\frac{1}{9^{10}-3}\)

\(\Rightarrow\frac{9^{10}-4}{9^{10}-5}>\frac{9^{10}-2}{9^{10}-3}\)

b ) Ta có : 

\(\frac{2.7^{10}-1}{7^{10}}=2-\frac{1}{7^{10}}\)

\(\frac{2.7^{10}+1}{7^{10}+1}=\frac{2.7^{10}+2-1}{7^{10}+1}=\frac{2\left(7^{10}+1\right)-1}{7^{10}+1}=2-\frac{1}{7^{10}+1}\)

Do \(\frac{1}{7^{10}}>\frac{1}{7^{10}+1}\)

\(\Rightarrow2-\frac{1}{7^{10}}< 2-\frac{1}{7^{10}+1}\)

\(\Rightarrow\frac{2.7^{10}-1}{7^{10}}< \frac{2.7^{10}+1}{7^{10}+1}\)

26 tháng 7 2018

mình xem chả hiểu đây này

16 tháng 3 2018

+ta có 10^2010=10...0(2010 số 0)

và 10^2011=10...0(2011 số 0)

suy ra  -9/10...0(2010 số 0)= -90/10...0(2011 số 0)[nhân tử,mẫu cho 10]

suy ra A=-90/10...0(2011 số 0)+-19/10...0(2011 số 0)= -109/10...0(2011 số 0)     [1]

+-19/10...0(2010 số 0)= -190/10...0(2011 số 0)[nhân tử,mẫu cho 10]

và 10^2011=10...0(2011 số 0)

suy ra -9/10...0(2011 số 0)+-190/10...0(2011 số 0)= -199/10...0(2011 số 0)    [2]

vì -109>-199 suy ra [1]>[2]

K CHO MIK VS BẠN ƠIIIIIIIIIIIIIIIIIII

16 tháng 3 2018

\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)

\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)

\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)

\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)

\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)

\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)

Làm tương tự nhé 

ta thấy -b > -a nên a>b

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

25 tháng 3 2019

ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)

\(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)

tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)

Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)\(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)

=> A > B 

3 tháng 3 2018

 2 hoặc 42

3 tháng 3 2018

Giải như mà mình không chắc nha:

a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)

Ta có:

  \(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)

\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)

Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......

b) Bạn giải tương tự nha! Lười lắm :v

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)