Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Ta có: \(\frac{n}{n+1}< 1\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
\(\Rightarrow A< B\)
b. mình ko biết làm
c. mình cũng ko biết làm
d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)
\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)
\(\Rightarrow A>B\)
Chúc bạn học tốt nhé
Câu 2:
b) ĐKXĐ: \(x\ne-1\)
Để \(\frac{3x+5}{x+1}\) là số nguyên thì \(3x+5⋮x+1\)
\(\Leftrightarrow3x+3+2⋮x+1\)
mà \(3x+3⋮x+1\)
nên \(2⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(2\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{0;-2;1;-3\right\}\)(tm)
Vậy: Khi \(x\in\left\{0;-2;1;-3\right\}\) thì \(\frac{3x+5}{x+1}\) là số nguyên
Câu 3:
a) ĐKXĐ: \(n\ne-3\)
Gọi \(d=ƯCLN\left(n+4;n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+4⋮d\\n+3⋮d\end{matrix}\right.\Leftrightarrow n+4-n-3⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+3\right)=1\)
hay \(\frac{n+4}{n+3}\) là phân số tối giản(đpcm)
b) Gọi \(e=ƯCLN\left(n+2;2n+5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+4⋮e\\2n+5⋮e\end{matrix}\right.\Leftrightarrow2n+4-2n-5⋮e\)
\(\Leftrightarrow-1⋮e\Leftrightarrow e=1\)
hay \(ƯCLN\left(n+2;2n+5\right)=1\)
\(\Leftrightarrow\frac{n+2}{2n+5}\) là phân số tối giản
c) Gọi \(f=ƯCLN\left(2n+1;3n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮f\\3n+1⋮f\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮f\\6n+2⋮f\end{matrix}\right.\Leftrightarrow6n+3-6n-2⋮f\)
\(\Leftrightarrow1⋮f\Leftrightarrow f=1\)
\(\LeftrightarrowƯCLN\left(2n+1;3n+1\right)=1\)
hay \(\frac{2n+1}{3n+1}\) là phân số tối giản(đpcm)