K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

A= (\(\left(\frac{19^{2010}}{19}+\frac{5^{2010}}{5}\right)^{2010}\)=\(\frac{\left(5.19^{2010}+19.5^{2010}\right)^{2010}}{19^{2010}.5^{2010}}\)= A(1)/A(2)

B = \(\frac{\left(19^{2010}+5^{2010}\right)^{2010}}{19^{2010}+5^{2010}}\)= B(1)/B(2)

Ta thấy A(1) >B(1), A(2)<B(2) => A>B

1 tháng 1 2021

ủa bạn duchinhle tại sao 19^2010.5^2010 lại lớn hơn 19^2020+5^2010

2 tháng 2 2017

Trước tiên ta có: \(\sqrt[2009]{19^{2009}+5^{2009}}>\sqrt[2009]{19^{2009}}=19\)

và \(\sqrt[2009]{19^{2009}+5^{2009}}>\sqrt[2009]{5^{2009}}=5\)

Ta có: \(\sqrt[2009]{A}=\left(19^{2009}+5^{2009}\right)\sqrt[2009]{19^{2009}+5^{2009}}\)

\(\sqrt[2009]{B}=19^{2010}+5^{2010}\)

\(\Rightarrow\sqrt[2009]{A}-\sqrt[2009]{B}=\left(19^{2009}+5^{2009}\right)\sqrt[2009]{19^{2009}+5^{2009}}-\left(19^{2010}+5^{2010}\right)\)

\(=\left(19^{2009}.\sqrt[2009]{19^{2009}+5^{2009}}-19^{2010}\right)+\left(5^{2009}.\sqrt[2009]{19^{2009}+5^{2009}}-5^{2010}\right)\)

\(=19^{2009}\left(\sqrt[2009]{19^{2009}+5^{2009}}-19\right)+5^{2009}\left(\sqrt[2009]{19^{2009}+5^{2009}}-5\right)\)

\(>19^{2009}.\left(19-19\right)+5^{2009}.\left(5-5\right)=0\)

\(\Rightarrow\sqrt[2009]{A}>\sqrt[2009]{B}\)

\(\Rightarrow A>B\)

25 tháng 8 2018

bạn vào link dưới đây nhé

https://olm.vn/hoi-dap/question/826167.html

nhớ tick cho mk nhé!!! :))

17 tháng 7 2018

Các bạn giúp mik nhanh lên nhé, mik đg cần rất gấp

16 tháng 10 2016

chiu roi

ban oi

tk nhe

xin do

bye

21 tháng 10 2016

cố lên