K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2019

a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
          2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30

b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444 
          444^333 = 111^333 x 4^333 
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111 
Mà: {111^444 > 111^333 (1) 
       {81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2) 
Từ (1) và (2) ta có:333^444 > 444^333

c) 3^450 =(3^3)^150 =27^150 
5^300=(5^2)^150=25^150 
vì 27^150 >25^150 =>3^450 > 5^300 
vậy 3^450 > 5^300

24 tháng 1 2019

a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)

b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)

c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)

\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)

Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)

16 tháng 2 2020

Sử dụng phương pháp đưa về cùng số mũ

a) Ta có : 1030=(103)10=100010

                2100=(210)10=102410

Vì 100010<102410 nên 1030<2100

Vậy 1030<2100.

Phần b và d tương tự

Sử dụng tính chất bắc cầu :

c) Vì 13<16 => 1340<1640

=> 1340<(24)40

=> 1340<2160<2163

=> 1340<2163

 Vậy 1340<2163.

3 tháng 12 2018

Mk nghỉ giải lao sau đó mk lm cho

23 tháng 8 2020

a, 2^100

b, 333^444

c,2^161

d, 3^453

23 tháng 8 2020

a) Ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)

                  \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

mà \(1000< 1024\)

\(\Rightarrow1000^{10}< 1024^{10}\)

\(\Rightarrow10^{30}< 2^{100}\)

b) Ta có : \(333^{444}=\left(111.3\right)^{444}=111^{444}.3^{444}=111^{444}.\left(3^4\right)^{111}=111^{444}.81^{111}\)

                 \(444^{333}=\left(111.4\right)^{333}=111^{333}.4^{333}=111^{333}.\left(4^3\right)^{111}=111^{333}.64^{111}\)

mà \(444>333\Rightarrow111^{444}>111^{333}\)

và \(81>64\Rightarrow81^{111}>64^{111}\)

\(\Rightarrow111^{444}.81^{111}>111^{333}.64^{111}\)

\(\Rightarrow333^{444}>444^{333}\)

c) Ta có : \(2^{161}>2^{160}=\left(2^4\right)^{40}=16^{40}>13^{40}\)

\(\Rightarrow2^{161}>13^{40}\)

d) Ta có : \(3^{453}>3^{450}=\left(3^3\right)^{150}=27^{150}>25^{150}=\left(5^2\right)^{150}=5^{300}\)

\(\Rightarrow3^{453}>5^{300}\)

12 tháng 7 2019

1030= (103)10= 100010

2100=(210)10=102410

1000<1024 =>100010<102410 nên 1030<2100

15 tháng 7 2017

a) \(A=2^0+2^1+2^2+2^3+...+2^{2010}\) và  \(B=2^{2011}-1\)

\(2A=2^1+2^2+2^3+....+2^{2011}\)

\(2A-A=\left(2^1+2^2+2^3+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+...+2^{2010}\right)\)

\(A=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)nên \(A=B\)

c) \(A=10^{30}\)và \(B=2^{100}\)

\(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)

\(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

Vì \(1000< 1024\)nên \(10^{30}< 2^{100}\)

e) \(A=3^{350}\)và  \(B=5^{300}\)

\(A=3^{350}=\left(3^7\right)^{50}=2187^{50}\)

\(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)

Vì \(2187< 15625\)nên \(3^{350}< 5^{300}\)

17 tháng 7 2017

Thank you.

6 tháng 8 2017

g. 5300 = 5100.3 = ( 5100 )3 

3453 = 3151.3 = ( 3151)3 

  Vì... 

Các câu trên tương tự, nhiều wá nên lười =) 

12 tháng 7 2015

U cam on ban nhe .

Ban giup minh tra loi voi