K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

\(2^{150}=\left(2^3\right)^{50}=8^{50}\)

\(3^{100}=\left(3^2\right)^{50}=9^{50}\)

Vì 8 < 9 => \(8^{50}<9^{50}\)

Vậy \(2^{150}<3^{100}\).

5 tháng 2 2016

b) 520 > 313

520>313

duyệt đi

19 tháng 9 2018

\(2^{225}=8^{75}< 9^{75}=3^{150}\)

\(2^{91}>2^{90}=32^{18}>25^{18}=5^{36}>5^{35}\)

\(99^{20}=\left(99.99\right)^{10}< \left(99.101\right)^{10}=9999^{10}\)

19 tháng 9 2018

a, \(2^{225}=\left(2^3\right)^{75}\) 

    \(3^{150}=\left(3^2\right)^{75}\)

b,\(2^{91}=\left(2^{13}\right)^7\)

\(5^{35}=\left(5^5\right)^7\)

c,\(99^{20}=\left(99\cdot99\right)^{10}\)

\(9999^{10}=\left(99\cdot101\right)^{10}\)

18 tháng 8 2016

1 ) Ta có : \(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

             \(2^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì : \(8^{111}< 9^{111}\)

\(\Rightarrow2^{332}< 3^{223}\)

2 ) Ta có : \(\left(222^3\right)^{111}=\left(2.111\right)^3=8.111^3\)

                  \(3^{222}=\left(333^2\right)^{111}=\left(3.111\right)^2=9.111^2\)

Vì : \(8.111^2< 9.111^2\)

\(\Leftrightarrow2^{333}< 3^{222}\)

18 tháng 8 2016

1. Ta có:

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) nên \(2^{332}< 8^{111}< 9^{111}< 3^{223}\Rightarrow2^{332}< 3^{223}\)

Vậy \(2^{332}< 3^{223}\)

2. Ta có:

\(2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{222}=\left(3^2\right)^{111}=9^{111}\)

Vì \(8^{111}< 9^{111}\) nên \(2^{333}< 3^{222}\)

Vậy \(2^{333}< 3^{222}\)

 

2^225=(2^15)^15=32768^15
3^150=(3^10)^15=59049^15
ta có: 32768<59049<=>32768^15<59049^15
<=>2^225<3^150