K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Ta có \(\frac{2012.2013}{2012.2013+1}\)và \(\frac{2013}{2012}\)

Vì \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)

nên \(\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)

\(\frac{2012}{2013}\)và \(\frac{2011}{2012}\)

phàn bù của \(\frac{2012}{2013}\)là \(\frac{1}{2013}\)

phàn bù của \(\frac{2011}{2012}\)là \(\frac{1}{2012}\)

Vì \(\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{2012}{2013}>\frac{2011}{2012}\)

16 tháng 6 2018

Ta có : \(\frac{2012\cdot2013}{2012\cdot2013+1}< 1\)

             \(\frac{2013}{2012}>1\)

\(\Rightarrow\frac{2012\cdot2013}{2012\cdot2013+1}< \frac{2013}{2012}\)

Có : \(\frac{2012}{2013}=1-\frac{2012}{2013}=\frac{2013}{2013}-\frac{2012}{2013}=\frac{1}{2013}\)

         \(\frac{2011}{2012}=1-\frac{2011}{2012}=\frac{2012}{2012}-\frac{2011}{2012}=\frac{1}{2012}\)

Vì \(2013< 2012\)nên \(\frac{1}{2013}< \frac{1}{2012}\)hay \(\frac{2012}{2013}< \frac{2011}{2012}\)

Bài làm

\(A=\frac{2011.2012-1}{2011.2012}\) và \(B=\frac{2012.2013-1}{2012.2013}\)

Ta có:

\(A=\frac{2011.2012-1}{2011.2012}\)

\(A=\frac{2011.2012-1.1-1.1}{2011.2012}\)

\(A=\frac{2011.2012-1.\left(1-1\right)}{2011.2012}\)

\(A=\frac{2011.2012-1.0}{2011.2012}\)

\(A=\frac{2011.2012-0}{2011.2012}\)

\(A=\frac{2011.2012}{2011.2012}\)

\(A=1\)

\(B=\frac{2012.2013-1}{2012.2013}\)

\(B=\frac{2012.2013-1.1-1.1}{2012.2013}\)

\(B=\frac{2012.2013-1.\left(1-1\right)}{2012.2013}\)

\(B=\frac{2012.2013-1.0}{2012.2013}\)

\(B=\frac{2012.2013-0}{2012.2013}\)

\(B=\frac{2012.2013}{2012.2013}\)

\(B=1\)

Vì 1 = 1

=> A = B

Hay

\(A=\frac{2011.2012-1}{2011.2012}\)=  \(B=\frac{2012.2013-1}{2012.2013}\)

Vậy \(A=\frac{2011.2012-1}{2011.2012}\)\(B=\frac{2012.2013-1}{2012.2013}\)

# Chúc bạn học tốt #

21 tháng 7 2019

Ta có : A =( 2011.2012-1)/(2011.2012) = (2011.2012)/(2011.2012) - 1/(2011.2012) = 1 - (1/2011.2012)

           B =( 2012.2013-1)/(2012.2013) = (2012.2013)/(2012.2013) - 1/(2012.2013) = 1 - (1/2012.2013)

Ta thấy : 1/(2011.2012)>1/(2012.2013)(vì chung tử số là 1 , mẫu số : 2011.2012 < 2012.2013)

Suy ra , 1-(1/2011.2012)<1-(1/2012.2013)

Suy tiếp :        A              <           B

24 tháng 2 2017

ÁP DỤNG CÔNG THỨC NẾU \(\frac{a}{b}\)>1 thì

\(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)

Ta có : \(\frac{2012^{12}+1}{2012^{13}+1}\)>\(\frac{2012^{12}+1+2011}{2012^{13}+1+2011}\)=\(\frac{2012^{12}+2012}{2012^{13}+2012}\)=\(\frac{2012.\left(2012^{11}+1\right)}{2012.\left(2012^{12}+1\right)}\)

rồi rút gọn thành \(\frac{2012^{11}+1}{2012^{12}+1}=B\)

Vậy A>B

Nhớ cho mình đúng nha

9 tháng 3 2017

Ta có:\(A=\dfrac{2012^{2012}+1}{2012^{2013}+1}\)

\(\Rightarrow2012.A=\dfrac{2012^{2013}+2012}{2012^{2013}+1}=\dfrac{2012^{2013}+1+2011}{2012^{2013}+1}=1+\dfrac{2011}{2012^{2013}+1}\)Ta có:\(B=\dfrac{2012^{2011}+1}{2012^{2012}+1}\)

\(\Rightarrow2012.B=\dfrac{2012^{2012}+2012}{2012^{2012}+1}=\dfrac{2012^{2012}+1+2011}{2012^{2012}+1}=1+\dfrac{2011}{2012^{2012}+1}\)\(\dfrac{2011}{2012^{2013}+1}< \dfrac{2011}{2012^{2012}+1}\)

\(\Rightarrow1+\dfrac{2011}{2012^{2013}+1}< 1+\dfrac{2011}{2012^{2012}+1}\)

\(\Rightarrow\dfrac{2012^{2012}+1}{2012^{2013}+1}< \dfrac{2012^{2011}+1}{2012^{2012}+1}\)

Vậy A<B

17 tháng 3 2019

\(\frac{2010}{2011}\)\(\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}\)\(\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}\)\(\frac{2012}{2011+2012+2013}\)

=> \(\frac{2010}{2011}\)\(\frac{2011}{2012}\)\(\frac{2012}{2013}\)\(\frac{2010+2011+2012}{2011+2012+2013}\)

=> P > Q

7 tháng 4 2019

Ta có \(B=\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2013}+\frac{2012}{2013}=\frac{2011+2012}{2013}\)

    Lại có: \(\frac{2011+2012}{2013}>\frac{2011+2012}{2012+2013}\)                        ( ngoặc 2 dòng này lại nhé dòng này và dòng trên)

 \(\Rightarrow B>A\)

7 tháng 4 2019

nhầm là A > B

7 tháng 3 2017

TA CÓ :

\(B=\frac{2010+2011+2012}{2011+2012+2013}\)

\(B=\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

VÌ : \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

\(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

\(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

=> A > B 

VẬY , A > B

Mình tự hỏi. sao banh biết rồi còn đăng lên làm gì??????????

19 tháng 6 2017

Ta có

\(\frac{A^{2011}}{A^{2012}}=\frac{A^{2012}}{A^{2103}}=\frac{A}{A^2}\)

=> \(\frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}=\frac{2A}{A^2}\)

\(\frac{A^{2011+2012}}{A^{2012+2013}}=\frac{A^{4023}}{A^{4025}}=\frac{1}{A^2}\)

=> \(\frac{A^{2011+2012}}{A^{2012+2013}}< \frac{A^{2011}}{A^{2012}}+\frac{A^{2012}}{A^{2013}}\)

21 tháng 3 2019

ta có: \(\frac{2011}{2012}>\frac{2011}{2012+2013};\frac{2012}{2013}>\frac{2012}{2013+2012}.\)

\(\Rightarrow A>\frac{2011}{2012+2013}+\frac{2012}{2013+2012}=\frac{2011+2012}{2012+2013}=B\)

....

21 tháng 3 2019

Ta có \(\frac{2011}{2012}>\frac{2011}{2012+2013}\)

          \(\frac{2012}{2013}>\frac{2012}{2012+2013}\)

CỘNG VẾ THEO VẾ,TA CÓ:

\(\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)

\(\Rightarrow\frac{2011}{2012}+\frac{2012}{2013}>\frac{2011+2012}{2012+2013}\)

\(\Rightarrow A>B\)

Vậy A>B

13 tháng 6 2017

a, \(\frac{2011}{2012}\)và  \(\frac{2012}{2011}\)

Vì \(\frac{2011}{2012}\)có Tử số bé hơn Mẫu số nên phân số đó < 1 ; \(\frac{2012}{2011}\)có Tử số lớn hơn Mẫu số nên phân số đó > 1 

=> \(\frac{2011}{2012}< \frac{2012}{2011}\)

b, \(\frac{2000}{2013}\)và  \(\frac{2011}{2012}\)

Ta có: 

\(\frac{2000}{2013}=\frac{2000}{2013}+\frac{13}{2013}\)  ;  \(\frac{2011}{2012}=\frac{2011}{2012}+\frac{1}{2012}\)

Ta thấy \(\frac{13}{2013}>\frac{1}{2012}\)

\(\Rightarrow\frac{2000}{2013}< \frac{2011}{2012}\)

13 tháng 6 2017

a,2011/2012<2012/2011

b,2000/2013<2011/2012

20 tháng 4 2016

P > Q  không phải toán lớp 6

20 tháng 4 2016

P = \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)

Q = \(\frac{2010+2011+2012}{2011+2012+2013}\) = \(\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

Vì: \(\frac{2010}{2011}>\frac{2010}{2011+2012+2013}\)

     \(\frac{2011}{2012}>\frac{2011}{2011+2012+2013}\)

     \(\frac{2012}{2013}>\frac{2012}{2011+2012+2013}\)

 => \(\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}>\frac{2010}{2011+2012+2013}+\frac{2011}{2011+2012+2013}+\frac{2012}{2011+2012+2013}\)

                    P                         >                                         Q