Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10A=\(\frac{10^{20}+10}{10^{20}+1}\)=\(\frac{10^{20}+1+9}{10^{20}+1}\)=\(1\)+\(\frac{9}{10^{20}+1}\)
10B=\(\frac{10^{21}+10}{10^{21}+1}\)=\(\frac{10^{21}+1+9}{10^{21}+1}\)=\(1\)+\(\frac{9}{10^{21}+1}\)
Vì \(\frac{9}{10^{20}+1}\)>\(\frac{9}{10^{21}+1}\)nên 10A>10B\(\Rightarrow\)A>B
Do \(B=\frac{10^{20}+1}{10^{21}+1}\)<1
\(\Rightarrow B=\frac{10^{20}+1}{10^{21}+1}\)<\(\frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}=A\)
\(\Rightarrow\)B<A hay A<B
Ta chứng minh bài toán phụ:
Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)
Ta có: \(a< b\)
\(\Rightarrow ac< bc\)
\(\Rightarrow ac+ba< bc+ba\)
\(a\left(b+c\right)< b.\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)
đpcm
Áp dụng vào bài toán ta có:
\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)
Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)
Tham khảo nhé~
Đặt \(A=\frac{10^{19}+1}{10^{20}+1}\)
\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)
\(B=\frac{10^{20}+1}{10^{21}+1}\)
\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)
\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)
\(\Rightarrow10A>10B\Rightarrow A>B\)
Ta co:
B=\(\frac{10^{30}+1}{10^{31}+1}\)<\(\frac{10^{30}+1+99}{10^{31}+1+99}\)=\(\frac{10^{30}+100}{10^{31}+100}\)=\(\frac{10^{10}\cdot\left(10^{20}+1\right)}{10^{10}\cdot\left(10^{21}+1\right)}\)=\(\frac{10^{20}+1}{10^{21}+1}\)=A
Vay A<B
Mình làm mẫu câu a) các câu sau tương tự nhé :
Đăt \(A=\frac{9^{10}+1}{9^{11}+1}\Rightarrow9A=\frac{9^{11}+9}{9^{11}+1}=1+\frac{8}{9^{11}+1}\)
\(B=\frac{9^{11}+1}{9^{12}+1}\Rightarrow9B=\frac{9^{12}+9}{9^{12}+1}=1+\frac{8}{9^{12}+1}\)
Ta có : \(9^{11}+1< 9^{12}+1\)
\(\Rightarrow\frac{8}{9^{11}+1}>\frac{8}{9^{12}+1}\)
\(\Rightarrow1+\frac{8}{9^{11}+1}>1+\frac{8}{9^{12}+1}\)
\(\Rightarrow9A>9B\)
hay : \(A>B\)
Vậy : \(\frac{9^{10}+1}{9^{11}+1}>\frac{9^{11}+1}{9^{12}+1}\)
Đặt \(\frac{9^{10}+1}{9^{11}+1}\)là A
\(\frac{9^{11}+1}{9^{12}+1}\) là B
\(\Rightarrow9A=\frac{9^{11}+9}{9^{11}+1}=1+\frac{8}{9^{11}+1}\)
\(\text{}\Rightarrow9B=\frac{9^{12}+9}{9^{12}+1}=1+\frac{8}{9^{12}+1}\)
\(\text{Vì }\frac{8}{9^{11}+1}>\frac{8}{9^{12}+1}\)
\(\Rightarrow9A>9B\Rightarrow A>B\)
các bài khác cũng tương tự nhé nhé
Đặt A = \(\frac{10^{20}+1}{10^{21}+1}\)
=> 10A = \(\frac{10^{21}+10}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)
Đặt B = \(\frac{10^{21}+1}{10^{22}+1}\)
=> 10B = \(\frac{10^{22}+10}{10^{22}+1}=1+\frac{9}{10^{22}+1}\)
Vì \(\frac{9}{10^{21}+1}>\frac{9}{10^{22}+1}\)
=> \(1+\frac{9}{10^{21}+1}>1+\frac{9}{10^{22}+1}\)
=> 10A > 10B
=> A > B