Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{8}{9}=1-\frac{1}{9}\)
\(\frac{108}{109}=1-\frac{1}{109}\)
Vì \(\frac{1}{9}>\frac{1}{109}\)
Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)
Vậy \(\frac{8}{9}< \frac{108}{109}\)
b)
\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)
\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\)
\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Bài 1 :
a) 40/49 > 15/21
b) 22/49 > 3/8
c) 25/46 < 12/18
e) \(\frac{15}{16}=\frac{15.1010}{16.1010}=\frac{15150}{16160}=1-\frac{1010}{16160}\)
\(\frac{15151}{16161}=1-\frac{1010}{16161}\)
Vì \(16160< 16161\)\(\Rightarrow\frac{1}{16160}>\frac{1}{16161}\)
\(\Rightarrow\frac{1010}{16160}>\frac{1010}{16161}\)\(\Rightarrow1-\frac{1010}{16160}< 1-\frac{1010}{16161}\)
hay \(\frac{15}{16}< \frac{15151}{16161}\)
a) A = 1002 - 992 + 982 - 972 + ... + 22 - 12
A = (1002 - 992) + (982 - 972) + ... + (22 - 12)
A = (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + ... + (2 - 1)(2 + 1)
A = 1. 199 + 1. 195 + ... + 1.3
A = 199 + 195 + ... + 3
A = (199 + 3)[(199 - 3) : 4 + 1] : 2
A = 202 . 50 : 2
A = 5050
b) B = (202 + 182 + 162 + ... + 22) - (192 + 172 + 152 + ... + 12)
B = 202 + 182 + 162 + ... + 22 - 192 - 173 - 152 - ... - 12)
B = (202 - 192) + (182 - 172) + (162 - 152) + ... + (22 - 12)
B = (20 - 19)(20 + 19) + (18 - 17)(18 + 17) + ... + (2 - 1)(2 + 1)
B = 1. 39 + 1.35 + ... + 1.3
B = 39 + 35 + ... + 3
B = (39 + 3)[(39 - 3) : 4 + 1] : 2
B = 42 . 10 : 2
B = 210
#)Giải :
a)\(A=100^2-99^2+98^2-97^2+...+2^2-1\)
\(A=\left(100-99\right)+\left(98-97\right)+...+\left(2-1\right)\)
\(A=100+99+98+...+2+1\)
\(A=\frac{\left(1+100\right)100}{2}=5050\)
b)\(B=\left(20^2+18^2+16^2+...+2^2\right)-\left(19^2+17^2+15^2+...+1^2\right)\)
\(B=20^2-19^2+18^2-17^2+...+2^2-1\)
Giờ trở thành dạng của ý a) rùi nhé, tương tự mak làm theo
c)\(C=\left(-1\right)^n.\left(-1\right)^{2n+1}.\left(-1\right)^{n+1}\)
\(C=\left(-1\right)^n.\left(-1\right)^2.\left(-1\right)^n.\left(-1\right).\left(-1\right)^n.\left(-1\right)\)
\(C=\left[\left(-1\right)^n.\left(-1\right)^n.\left(-1\right)^n\right].1.\left(-1\right).\left(-1\right)\)
\(C=\left(-1\right)^n.1.1\)
\(C=\left(-1\right)^n\)
c)
\(\frac{19}{18}=1+\frac{1}{18}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{18}>\frac{1}{2016}\)
Vậy \(\frac{19}{18}>\frac{2017}{2016}\)
d)
\(\frac{133}{173}=\frac{130+3}{170+3}=\frac{13+0,3}{17+0,3}\)
Ta có :
\(\frac{a}{b}< \frac{a+x}{b+x}\forall a;b;x>0\)
Vậy \(\frac{13}{17}< \frac{133}{173}\)
\(a,\frac{8}{9}< \frac{108}{109}\)
\(b,\frac{97}{100}< \frac{98}{99}\)
\(c,\frac{19}{18}>\frac{2017}{2016}\)
\(d,\frac{15}{16}>\frac{515}{616}\)