Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(9^{27}=\left(3^2\right)^{27}=3^{54}\) và \(81^{13}=\left(3^4\right)^{13}=3^{52}\Rightarrow3^{54}>3^{52}\Rightarrow9^{27}>81^{13}\)
b/ \(5^{14}=\left(5^2\right)^7=25^7< 27^7\)
d/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\) và \(3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
f/ \(3^{450}=\left(3^3\right)^{150}=27^{150}\) và \(5^{300}=\left(5^2\right)^{150}=25^{150}\Rightarrow27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)
c/ \(10^{30}=\left(10^3\right)^{10}=1000^{10}\) và \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\Rightarrow1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
\(a,3^6=3^{2.3}=\left(3^2\right)^3=9^3.\)
\(6^3=6^3\)
Vì \(9^3>6^3\Rightarrow3^6>6^3\)
\(b,5^{30}=5^{3.10}=\left(5^3\right)^{10}=125^{10}\)
\(124^{10}=124^{10}\)
Vì \(125^{10}>124^{10}\Rightarrow5^{30}>124^{10}\)
\(c,3^{21}=3^{20}.3^1=3^{2.10}.3=9^{10}.3\)
\(2^{31}=2^{30}.2^1=2^{3.10}.2=8^{10}.2\)
Vì \(9^{10}+3>8^{10}+2\Rightarrow3^{21}>2^{31}\)
\(e,5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}\)
\(26^{14}=26^{14}\)
Vì \(25^{14}< 26^{14}\Rightarrow5^{28}< 26^{14}\)
\(f,27^5=\left(3^3\right)^5=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{15}\)
Vì \(3^{15}=3^{15}\Rightarrow27^5=243^3\)
\(g,3^{500}=3^{5.100}=\left(3^5\right)^{100}=243^{100}\)
\(7^{300}=7^{3.100}=\left(7^3\right)^{100}=343^{100}\)
Vì \(243^{100}< 343^{100}\Rightarrow3^{500}< 7^{300}\)
a,36và 63
3^6=3^3.3^3
6^3=(2.3)^3=2^3.3^3
vi 3^3.3^3>2^3.3^3
nen 3^6>6^3
đăng từng bài thui bạn êi ~.~
\(a)\)\(4x^3+12=120\)
\(\Leftrightarrow\)\(4x^3=108\)
\(\Leftrightarrow\)\(x^3=27\)
\(\Leftrightarrow\)\(x^3=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
\(b)\) \(\left(4x-1\right)^2=25.9\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=5^2.3^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=\left(5.3\right)^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=15^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-1=15\\4x-1=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=16\\4x=-14\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{16}{4}\\x=\frac{-14}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{-7}{2}\end{cases}}}\)
Vậy \(x=4\) hoặc \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
\(\left(2x-15\right)^{15}=\left(2x-15\right)^3\)
\(\Leftrightarrow\)\(\left(2x-15\right)^{15}-\left(2x-15\right)^3=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3[\left(2x-15\right)^{12}-1]=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3=0\)
Hoặc \(\left(2x-15\right)^{12}-1=0\)
\(\Leftrightarrow\)\(2x-15=0\)
Hoặc \(\left(2x-15\right)^{12}=1\)
\(\Leftrightarrow\)\(2x=15\)
Hoặc \(\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}}\)
\(\Leftrightarrow\)\(x=\frac{15}{2}=7,5\)
Hoặc \(\orbr{\begin{cases}x=\frac{16}{2}\\x=\frac{14}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy \(x=7\)\(;\)\(x=7,5\) hoặc \(x=8\)
Chúc bạn học tốt ~
\(A=1+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)
\(\Rightarrow A+1\)là một lũy thừa
đpcm
A= 82 . 324 = (23)2 . (25)4 = 26.220 = 226
\(B=27^3.9^4.81^2\)
\(=\left(3^3\right)^3.\left(3^2\right)^4.\left(3^4\right)^2\)
\(=3^9.3^8.3^8\)
\(=3^{25}\)
A) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
do \(8^{100}< 9^{100}=>A< B\)
B) \(27^5=\left(3^3\right)^5=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{15}\)
=> \(27^5=243^3\)
\(a;5^{23}=5\cdot5^{22}< 6\cdot5^{22}\Rightarrow5^{23}< 6\cdot5^{22}\)
\(b;7\cdot2^{13}< 8\cdot2^{13}=2^3\cdot2^{13}=2^{15}\)
\(c;21^{15}=3^{15}\cdot7^{15}>3^{15}\cdot7^{14}=27^5\cdot49^8\)
\(d;199^{20}< 200^{20}=10^{40}\cdot2^{20}< 10^{45}\cdot2^{15}=2000^{15}< 2001^{15}\)
\(e;3^{39}=9^{13}< 11^{13}< 11^{21}\)
a) 24 và 42.Ta có: b)316 và 275.Ta có:
24=(22)2=42 275=(33)5=315<316
=>24=42.Vậy.. =>275<316.Vậy...
c)233 và 322.Ta có: d)chịu
233=(23)11=811
322=(32)11=911>811.
=>233<322.Vậy....
a) \(2^4\)
\(4^2=\left(2^2\right)^2=2^4\)
\(\Rightarrow2^4=4^2\)
b) \(3^{16}=3^{16}\)
\(27^5=\left(3^3\right)^5=3^{15}\)
\(\Rightarrow3^{16}>27^5\)