K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

a)\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52\)

Vì 52 > 50 nên B > A

14 tháng 8 2019

a)262-242=(26-24)(26+24)=2.50=100

272-252=(27-25)(27+25)=2.52=104

mà 100<104 => 262-242<272-252

14 tháng 8 2019

\(hdt:\left(a-b\right)\left(a+b\right)=a^2-b^2\)

\(3C=3\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(3C=\left(4-1\right)\left(4+1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(3C=\left(4^2-1\right)\left(4^2+1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(3C=\left(4^4-1\right)\left(4^4+1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(3C=\left(4^8-1\right)\left(4^8+1\right)\left(4^{16}+1\right)\)

\(3C=\left(4^{16}-1\right)\left(4^{16}+1\right)=4^{32}-1\Rightarrow3C< D\Rightarrow C< D\)

A=(2+1)x(22+1)x(24+1)x(28+1)x(216+1)

= 3.5.17.257.65537

   = 42949672995 = 232
 
⇒A = B
mình nhé 

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\) =\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\) =\(a^2\) b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\) =\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\) =\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\) =25 c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\) =\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\) =\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\) =... =\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\) \)

d)Tương tự

\(a,\left(a-b+c\right)^2-\left(b-c\right)^2+2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2+2ab-2ac\)

=\(a^2\)

b)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(3x+3-2\right)\left(3x+3+2\right)+\left(3x+5\right)^2\)

=\(\left(3x+1\right)^2-2\left(\left(3x+3\right)^2-4\right)+\left(3x+5\right)^2\)

=\(9x^2+6x+1-18x^2-36x-9+8+9x^2+30x+25\)

=25

c)\(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)\)

=\(\left(2-1\right)\left(2+1\right)\left(2^2+1\right)....\left(2^{64}+1\right)\)

=\(\left(2^2-1\right)\left(2^2+1\right)...\left(2^{64}+1\right)\)

=...

=\(\left(2^{64}-1\right)\left(2^{64}+1\right)=2^{128}-1\)

d)Tương tự

5 tháng 9 2017

cảm ơn

a: \(=\left[a-\left(b-c\right)\right]^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2a\left(b-c\right)+\left(b-c\right)^2-\left(b-c\right)^2+2ab-2ac\)

\(=a^2-2ab+2ac+2ab-2ac=a^2\)

b: \(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2\)

\(=\left(-4\right)^2=16\)

c: \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\cdot...\cdot\left(2^{64}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\cdot\left(2^{32}+1\right)\left(2^{64}+1\right)\)

\(=2^{128}-1\)

d: \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\dfrac{\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(=\dfrac{3^{64}-1}{2}\)

B=24(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^2-1)(5^2+1)(5^4+1)(5^8+1)(5^16+1)
=(5^4-1)(5^4+1)(5^8+1)(5^16+1)
=(5^8-1)(5^8+1)(5^16+1)
=(5^16-1)(5^16+1)
=5^32-1

Vậy B<A

6 tháng 7 2019

1.

Ta có :

A=26^2-24^2 =(26-24)(26+24)= 2.50 (1)

B=27^2-25^2= (27-25)(27+25)=2.52 (2)

từ (1) và (2) suy ra A<B

6 tháng 7 2019

mà bài 4 mình chữa đề bài thành các chữ số giống nhau nhé

Ta có : 77782-22232=(7778-2223)(7778+2223)

=5555.10001

=55555555

Vậy hiệu trên là một số gồm các chữ số giống nhau

2 tháng 7 2019

Bài 1 :

\(A=26^2-24^2=\left(26-24\right)\left(26+24\right)=2.50=100\)

\(B=27^2-25^2=\left(27-25\right)\left(27+25\right)=2.52=104\)

Vì \(100< 104\Rightarrow A< B\)

Bài 2 :

\(4\left(x+1\right)^2+\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\)

\(\Rightarrow4\left(x^2+2x+1\right)+4x^2-4x+1-8\left(x^2-1\right)=11\)

\(\Rightarrow4x^2+8x+4+4x^2-4x+1-8x^2+8=11\)

\(\Rightarrow4x=-2\)\(\Leftrightarrow x=-\frac{1}{2}\)