Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 nên \(8^{100}< 9^{100}\)Hay \(2^{300}< 3^{200}\)
Vậy ....
Ta có : 2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
a) \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
vì 8 < 9 và 75 = 75
=> 875 < 975
=> 2225 < 3150
b) \(2^{91}>2^{90}=\left(2^5\right)^{18}=32^{18}>25^{18}=5^{36}>5^{35}\)
\(\Rightarrow2^{91}>5^{35}\)
c) \(5^{300}=\left(5^3\right)^{100}=125^{100}\)
\(3^{500}=\left(3^5\right)^{100}=243^{100}\)
Vì 125 < 243 mà 100 = 100
=> \(5^{300}< 3^{500}\)
Bài nì lp 6 lm nhìu rùi mà
Ta có:
+ 2225 = (23)75 = 875
3150 = (32)75 = 975
Vì 875 < 975
=> 3225 < 3150
+ 291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 81927 > 31257
=> 291 > 535
+ 5300 = (53)100 = 125100
3500 = (35)100 = 243100
Vì 125100 < 243100
=> 5300 < 3500
a) \(2^{225}\)= \(\left(2^3\right)^{75}\)= \(8^{75}\)
\(3^{150}\)= \(\left(3^2\right)^{75}\)= \(9^{75}\)
Vì \(8^{75}\)< \(9^{75}\)
Nên \(2^{225}\)< \(3^{150}\)
b) \(2^{332}\)< \(2^{333}\)= \(\left(2^3\right)^{11}\)= \(8^{11}\)
\(3^{223}\)> \(3^{222}\)= \(\left(3^2\right)^{11}\)= \(9^{11}\)
Vì \(8^{11}\)< \(9^{11}\)
Nên : \(2^{332}\)< \(3^{223}\)
a/ 2225= (23)75 = 875
3150 = (32) 75 = 975
Vì 875 < 975 nên 2225 < 3150
b/ 3222 = (32)111 = 9111
2333 = (23)111 = 8111
vì 9111 > 8111 nên 3222 > 2333
b)2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
vi 8<9nen 2^300<3^200
Ta có \(3^{21}=\left(3^3\right)^7=27^7\)
\(2^{31}=2147483648\)
Mà \(27>2_{ }\)\(\Rightarrow3^{21}>2^{31}\)
c)
\(32^9>18^{13}\)(chứng minh tương tự)
\(a,2^{24}=\left(2^3\right)^8=8^8\)
\(3^{16}=\left(3^2\right)^8=9^8>8^8\)
\(\Rightarrow3^{16}>2^{24}\)
\(b,2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
Vừa nãy mình nhầm sorry
Cách 2 : b) Ta có: 2225 = (23)75 = 875 (1)
3150 = (32)75 = 975 (2)
Từ (1) và (2) => 2225 < 3150
Ta có: 2300 = (23)100 = 8100 (1)
3200 = (32)100 = 9100 (2)
Từ (1) và (2) ta có: 8100 < 9100 = > 2300 < 3200