K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2015

1) Phân tích A ra :

 A= 1717.17+\(\frac{1}{17^{18}.17}\)+1 So sánh với B ta có: A có 1718>1717 của B nhưng B lại có 1/1718>1/1719.

Mà 1718>1/1718 nên suy ra A>B

2) Bài nay tương tự bài trên. 

25 tháng 7 2016

2/(2012+2013) < 2/(2012 + 2012) = 2/ (2.2012) = 1/2012 
2009/(2012+2013) < 2009/2012 

=> 2011/(2012+2013) = 2/(2012+2013) + 2009/(2012+2013) < 1/2012 + 2009/2012 
=> 2011/(2012+2013) < 2010/2012 (a) 

2012/(2012+2013) < 2012/2013 (b) 

lấy (a) + (b) => (2011+2012)/(2012+2013) < 2010/2012 + 2012/2013 

vậy B < A 

\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=B\)

Vậy A>B

19 tháng 8 2020

Giúp đi ạ 

Xin mn đó

Làm ơn đi

Ai trả lời nhanh nhất tui k cho

18 tháng 3 2018

Bài 6.7*

Ta có : \(\dfrac{17^{18}+1}{17^{19}+1}< 1\)

\(\Rightarrow A=\dfrac{17^{18}+1}{17^{19}+1}< \dfrac{17^{18}+1+16}{17^{19}+1+16}=\dfrac{17^{18}+17}{17^{19}+17}=\dfrac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\dfrac{17^{17}+1}{17^{18}+1}=B\)

\(\)Vậy A < B

Bài 6.6*

Ta có : \(\dfrac{98^{99}+1}{98^{89}+1}>1\)

\(\Rightarrow C=\dfrac{98^{99}+1}{98^{89}+1}>\dfrac{98^{99}+1+97}{98^{89}+1+97}=\dfrac{98^{99}+98}{98^{89}+98}=\dfrac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\dfrac{98^{98}+1}{98^{88}+1}=D\)

Vậy C > D

23 tháng 2 2018

ta co B=1717+1/1718+1=10x(1717+1)/10x(1718+1)

                                 =1718+10/1719+10

mà A=1718+1/1719+1 < B=1718+10/1719+10

suy ra A < B

9 tháng 4 2019

C=98^99+1/98^89+1 > 98^99+1+97/98^89+1+97=98^99+98/98^89+98=98(98^98+1/98^88+1)=D

Vậy C>D

AH
Akai Haruma
Giáo viên
15 tháng 9 2024

Lời giải:

\(A=\frac{95^{10}(95^{89}+1)-95^{10}+1}{95^{89}+1}\\ =95^{10}-\frac{95^{10}-1}{95^{89}+1}\\ > 95^{10}-\frac{95^{10}-1}{95^{88}+1}=\frac{95^{98}+1}{95^{88}+1}=B\)

Vậy $A>B$

AH
Akai Haruma
Giáo viên
7 tháng 9 2024

Lời giải:

\(A=\frac{98^{12}+1}{98^{13}+1}\\ 98A=\frac{98^{13}+98}{98^{13}+1}=1+\frac{97}{98^{13}+1}> 1+\frac{97}{98^{14}+1}=\frac{98^{14}+98}{98^{14}+1}=98.\frac{98^{13}+1}{98^{14}+1}=98B\)

$\Rightarrow A>B$