K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Ta có công thức : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(a,b,c\inℕ^∗\right)\)

Áp dụng vào ta có : 

\(A=\frac{19^{18}+1}{19^{19}+1}< \frac{19^{18}+1+18}{19^{19}+1+18}=\frac{19^{18}+19}{19^{19}+19}=\frac{19\left(19^{17}+1\right)}{19\left(19^{18}+1\right)}=\frac{19^{17}+1}{19^{18}+1}=B\)

\(\Rightarrow\)\(A< B\) ( đpcm ) 

Vậy \(A< B\)

Chúc bạn học tốt ~

10 tháng 3 2018

cảm ơn bn

10 tháng 4 2018

A= 3,000...=3

B=1,0928...=1

Vậy A > B.

K mik nha. Mik làm đầu tiên mà.

AH
Akai Haruma
Giáo viên
2 tháng 8 2021

Lời giải:
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}=\frac{n(n+2)+(n+1)^2}{(n+1)(n+2)}=\frac{2n^2+4n+2}{n^2+3n+2}>1\) do $2n^2+4n+2> n^2+3n+2$ với mọi $n\in\mathbb{N}^*$

$B=\frac{2n+1}{2n+3}< 1$ do $2n+1< 2n+3$

Do đó $A>B$

17 tháng 4 2022

b.\(B=\dfrac{2n+5}{n+3}\)

\(B=\dfrac{n+n+3+3-1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{n+3}{n+3}-\dfrac{1}{n+3}\)

\(B=1+1-\dfrac{1}{n+3}\)

Để B nguyên thì \(\dfrac{1}{n+3}\in Z\) hay \(n+3\in U\left(1\right)=\left\{\pm1\right\}\)

*n+3=1 => n=-2

*n+3=-1  => n= -4

Vậy \(n=\left\{-2;-4\right\}\) thì B có giá trị nguyên

17 tháng 4 2022

Thế câu a

6 tháng 5 2017

Ta có: \(A=124\left(\frac{1}{1.1985}+\frac{1}{2.1986}+\frac{1}{3.1987}+...+\frac{1}{16.2000}\right)\)

\(=\frac{124}{1984}\left(\frac{1984}{1.1985}+\frac{1984}{2.1986}+\frac{1984}{3.1987}+...+\frac{1984}{16.2000}\right)\)

\(=\frac{1}{16}\left(1-\frac{1}{1985}+\frac{1}{2}-\frac{1}{1986}+\frac{1}{3}-\frac{1}{1987}+...+\frac{1}{16}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+\frac{1}{1987}+...+\frac{1}{2000}\right)\right]\)

\(B=\frac{1}{1.17}+\frac{1}{2.19}+...+\frac{1}{1984.2000}\)

\(=\frac{1}{16}\left(\frac{16}{1.17}+\frac{16}{2.18}+...+\frac{16}{1984.2000}\right)\)

\(=\frac{1}{16}\left(1-\frac{1}{17}+\frac{1}{2}-\frac{1}{18}+...+\frac{1}{1984}-\frac{1}{2000}\right)\)

\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{1984}\right)\right]-\left[\frac{1}{17}+\frac{1}{18}+...+\frac{1}{2000}\right]\)

\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)+\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{1984}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)

\(=\frac{1}{16}\left[\left(1+\frac{1}{2}+...+\frac{1}{16}\right)-\left(\frac{1}{1985}+\frac{1}{1986}+...+\frac{1}{2000}\right)\right]\)

Vậy A = B

27 tháng 11 2020

dễ tự nghĩ

29 tháng 5 2021

\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)

\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)

Nhận thầy 108 - 1 > 108 - 3

=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)

=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)

=> A < B

29 tháng 5 2021

b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)

17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)

Nhận thầy 17203 + 1 < 17204 + 1

=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)

=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\) 

Cách 1 :

Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)

          \(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)

Cộng theo từng vế ( 1) và ( 2 ) ta được :

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)

VẬY \(A>B\)

CÁCH 2

\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)

   \(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)

VẬY A>B  

Chúc bạn học tốt ( -_- )

4 tháng 3 2016

cách giải