K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

\(A=-\frac{9}{10^{2010}}-\frac{19}{10^{2011}}=-\frac{9}{10^{2010}}-\frac{10}{10^{2010}}+\frac{10}{10^{2010}}-\frac{9}{10^{2011}}-\frac{10}{10^{2011}}.\)

\(=-\frac{19}{10^{2010}}-\frac{9}{10^{2011}}+\frac{1}{10^{2009}}-\frac{1}{10^{2010}}=B+\frac{1}{10^{2009}}-\frac{1}{10^{2010}}\)

\(\Rightarrow A-B=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\Rightarrow A>B.\)

17 tháng 6 2016

\(-A=\frac{9}{10^{2010}}+\frac{19}{10^{2011}}\)

\(-A=\frac{9}{10^{2010}}+\frac{10}{10^{2011}}+\frac{9}{10^{2011}}\)

\(-A=\frac{9}{10^{2010}}+\frac{1}{10^{2010}}+\frac{9}{10^{2011}}\)

\(-A=\frac{10}{10^{2010}}+\frac{9}{10^{2011}}\)

\(-A=\frac{1}{10^{2009}}+\frac{9}{10^{2011}}\)

Tương tự với B, ta có:

\(-B=\frac{9}{10^{2011}}+\frac{19}{10^{2010}}\)

\(-B=\frac{9}{10^{2011}}+\frac{10}{10^{2010}}+\frac{9}{10^{2010}}\)

\(-B=\frac{9}{10^{2010}}+\frac{1}{10^{2009}}+\frac{9}{10^{2010}}\)

Ta thấy -B > -A \(\Rightarrow\)A > B.

3 tháng 5 2019

#)Giải :

\(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}\)

\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}\)

\(A-B=\frac{10}{10^{2010}}-\frac{10}{10^{2011}}=\frac{1}{10^{2009}}-\frac{1}{10^{2010}}>0\)

\(\Rightarrow A>B\)

          #~Will~be~Pens~#

12 tháng 5 2016
A=10.(-9)/10^2010+-19/10^2011 =-90/10^2011+-19/10^2011 =-109/10^2011 B=-9/10^2011+10.-19/10^2010 =-9/10^2011+-190/10^2011 =-199/10^2011 Vì -109/10^2011>-199/10^2011 Nên: A>B
7 tháng 3 2016

201010+20109=20109(2010+1)=20109x2011<20119x2011=201110.Vậy 201010+20109<201110

9 tháng 3 2015

Cho C=\(10^{2010}+\frac{1}{10^{2010}}\)

Xét \(A_1=10^{2010}+\frac{1}{10^{2011}}\)và \(B^{ }_1=10^{2011}+\frac{1}{10^{2012}}\)

Ta có \(A_1-C=10^{2010}+\frac{1}{10^{2010}}-10^{2010}-\frac{1}{10^{2010}}\)

         \(A_1-C=10.\left(\frac{1}{10^{2011}}-\frac{1}{10^{2010}}\right)\)

Giair tượng tự ta được \(B_1-C=10^{2010}.\left(9+\frac{1}{10^{2012}}-\frac{1}{10^{2010}}\right)\)

Ta thấy \(\frac{1}{10^{2012}}-\frac{1}{10^{2010}}<\frac{1}{10^{2011}}-\frac{1}{2010}\)\(\Leftrightarrow\frac{1}{10^{2012}}<\frac{1}{10^{2011}}\Rightarrow9+\frac{1}{10^{2012}}>\frac{1}{10^{2011}}\)

=> A1-C<B1-C=>A1<B1=> A1+1<B1+1 HAY A<B