Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
122 =14
132 <12.3
.............
11002 <199.100
⇒A<14 +12.3 +....+199.100
⇒A<14 +12 −13 +...+199 −1100
⇒A<14 +12 −1100
⇒A<14 <34
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{100\cdot101}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{2}-\frac{1}{101}=\frac{99}{202}>\frac{2}{3}\)
\(\Rightarrow A>\frac{2}{3}\)
1/2 + 1/3 = 2/6 + 3/6 = 5/6
1/2 + 1/3 + 1/4 = 5/6 + 1/4 = 20/24 + 6/24 = 13/12
1/2 + 1/3 + 1/4 + 1/5 = 13/12 + 1/5 =65/60 + 12/60 = 77/60
\(\dfrac{3}{4}\times\dfrac{8}{5}:1\dfrac{1}{6}\)
=\(\dfrac{6}{5}:\) \(\dfrac{7}{6}\)
=\(\dfrac{6}{5}\times\dfrac{6}{7}=\dfrac{36}{35}\)
2\(\dfrac{1}{3}\) x 1\(\dfrac{1}{4}\) -\(\dfrac{7}{5}\)
\(\dfrac{7}{3}\times\dfrac{5}{4}-\) \(\dfrac{7}{5}\)
\(\dfrac{35}{12}-\dfrac{7}{5}\)
\(\dfrac{175}{60}-\dfrac{84}{60}=\dfrac{91}{60}\)
4\(\dfrac{2}{3}+1\dfrac{1}{4} +2\dfrac{1}{3}+2\dfrac{3}{7}\)
(4 +2) + \(\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\) +1\(\dfrac{1}{4}\) + \(2\dfrac{3}{7}\)
6 + 1 + \(\dfrac{5}{4}\) + \(\dfrac{17}{7}\)
7 + \(\dfrac{103}{28}\)
\(\dfrac{299}{28}\)
B = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}...+\frac{1}{1+2+3+...+2019}\)
= \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2019\times1010}\)
= \(2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{2019\times2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2019}-\frac{1}{2020}\right)\)
= \(2\times\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(=2\times\frac{1009}{2020}\)
\(=\frac{1009}{1010}< \frac{1010}{1010}=1\)
\(\Rightarrow B< 1\)