Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A > B nhé
A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004
B = 20042005 / 20042005 +2004
Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )
Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha !
Chắc là A = B
nếu đúng thì tk cho mk nha !
Cho A=\(\dfrac{2003}{2004}\)+\(\dfrac{2004}{2005}\); B=\(\dfrac{2003+2004}{2004+2005}\)
Ta có: B=\(\dfrac{2003}{2004+2005}\)+\(\dfrac{2004}{2004+2005}\)
Vì: \(\dfrac{2003}{2004+2005}< \dfrac{2003}{2004}\)
\(\dfrac{2004}{2004+2005}< \dfrac{2004}{2005}\)
=>\(\dfrac{2003}{2004+2005}+\dfrac{2004}{2004+2004}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>\(\dfrac{2003+2004}{2004+2005}< \dfrac{2003}{2004}+\dfrac{2004}{2005}\)
=>B<A
Vậy B<A
\(\dfrac{2004.2005-1}{2004.2005}=1-\dfrac{1}{2004.2005}\)
\(\dfrac{2005.2006-1}{2004.2006}=1-\dfrac{1}{2005.2006}\)
\(Vì\dfrac{1}{2004.2005}>\dfrac{1}{2005.2006}\Rightarrow1-\dfrac{1}{2004.2005}< 1-\dfrac{1}{2005.2006}\Rightarrow\dfrac{2004.2005-1}{2004.2005}< \dfrac{2005.2006-1}{2004.2006}\)
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)
Ta có
\(\hept{\begin{cases}2004\cdot2003< 2004\cdot2005\\\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\end{cases}}\Rightarrow2003\cdot2004-\frac{1}{2003\cdot2004}< 2004\cdot2005-\frac{1}{2004\cdot2005}\)
Vậy 2003*2004-1/2003*2004<2004*2005-1/2004*2005.
\(2004A=\frac{2004^{2004}+2004}{2004^{2004}+1}=1+\frac{2003}{2004^{2004}+1}\)
\(2004B=\frac{2004^{2005}+2004}{2004^{2005}+1}=1+\frac{2003}{2004^{2005}+1}\)
\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
\(\Rightarrow2004A>2004B\)
\(\Rightarrow A>B\)
2004A=\(\frac{2004^{2004}+2004}{2004^{2004}+1}\)
\(\frac{2004^{2004}+2004}{2004^{2004}+1}-1=\frac{2003}{2004^{2004}+1}\)
2004B=\(\frac{2004^{2005}+2004}{2004^{2005}+1}\)
\(\frac{2004^{2005}+2004}{2004^{2005}+1}-1=\frac{2003}{2004^{2005}+1}\)
Ta thấy :\(\frac{2003}{2004^{2004}+1}>\frac{2003}{2004^{2005}+1}\)
=> \(2004A>2004B\)
Vậy \(A>B\)
Ta có :
\(B=\frac{2004+2005}{2005+2006}=\frac{2004}{2005+2006}+\frac{2005}{2005+2006}< \frac{2004}{2005}+\frac{2005}{2006}=A\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vây \(A>B\)
Chúc bạn học tốt ~
\(A=\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}=B\)
Vậy A > B
Ta có :
\(\dfrac{2004^{2005}+1}{2004^{2005}-2004}>1>\dfrac{2004^{2005}}{2004^{2005}+2004}\)
\(\Rightarrow\) \(A>1>B\)
\(\Rightarrow\) \(A>B\)