Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
\(\frac{B}{A}=\frac{\frac{2^{2017}-3}{2^{2016}-1}}{\frac{2^{2018}-3}{2^{2017}-1}}=\frac{2^{2017}-3}{2^{2016}-1}\cdot\frac{2^{2017}-1}{2^{2018}-3}\)
\(=\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}\)
Ta có: 4.22017 = 22019
3.22016 + 22018 < 4.22016 + 22018 = 2.22018 = 22019
=> 4.22017 > 3.22016 + 22018
=> - 4.22017 < - 3.22016 - 22018
\(\Rightarrow\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}< 1\)
=> B < A
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)
\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)
\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)