Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Cách 1 :
Ta có :
\(5A=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=\frac{5^{61}+1}{5^{61}+1}+\frac{4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\)
\(5B=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=\frac{5^{62}+1}{5^{62}+1}+\frac{4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\)
Vì \(\frac{4}{5^{61}+1}>\frac{4}{5^{62}+1}\) nên \(1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\)
\(\Rightarrow\)\(5A>5B\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
\(A=\frac{5^{60}+1}{5^{61}+1}\)
\(5A=\frac{5(5^{60}+1)}{5^{61}+1}=\frac{5^{61}+5}{5^{61}+1}=\frac{5^{61}+1+4}{5^{61}+1}=1+\frac{4}{5^{61}+1}\) \((1)\)
\(B=\frac{5^{61}+1}{5^{62}+1}\)
\(5B=\frac{5(5^{61})+1}{5^{62}+1}=\frac{5^{62}+5}{5^{62}+1}=\frac{5^{62}+1+4}{5^{62}+1}=1+\frac{4}{5^{62}+1}\) \((2)\)
Từ 1 và 2 \(\Rightarrow1+\frac{4}{5^{61}+1}>1+\frac{4}{5^{62}+1}\)
\(\Rightarrow5A>5B\)
Hay \(A>B\)
Vậy : ...
\(A=1+5+5^2+5^3+...+5^{59}\)
\(=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{57}+5^{58}+5^{59}\right)\)
\(=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{57}\left(1+5+5^2\right)\)
\(=31\left(1+5^3+...+5^{57}\right)\)chia hết cho \(31\).
\(A=1+5+5^2+5^3+...+5^{59}\)
\(5A=5+5^2+5^3+5^4+...+5^{60}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{60}\right)-\left(1+5+5^2+5^3+...+5^{59}\right)\)
\(4A=5^{60}-1\)
\(A=\frac{5^{60}-1}{4}< \frac{5^{60}}{4}\).
\(B=\frac{31}{2}.\frac{32}{2}.....\frac{60}{2}\)
\(B=\left(31.32.33....60\right).\frac{1.2.3....60}{2^{30.\left(1.2.3...30\right)}}\)
\(B=\left(1.3.5.....59\right).\frac{2.4.6.....60}{2.4.6....60}=1.3.5...59\)
=> \(B=A\)
ta có: \(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
mà \(1+3+3^2+...+3^9>1+3+3^2+...+3^8\)
\(\Rightarrow B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^8}>1\)
\(\Rightarrow A< B\)
Câu hỏi của nguyen van nam - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$
$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$
$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$
$\Rightarrow A=1-\frac{1}{2^{2021}}
$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$
Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$
$\Rightarrow A> B$