K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

\(A=1+2+2^2+...+2^{49}\)

\(2A=2+2^2+2^3+...+2^{50}\)

\(2A-A=2^{50}-1\)

\(A=\left(2^2\right)^{25}-1=4^{25}-1< 4^{25}=B\)

6 tháng 4 2020

Ta có \(A=1+2+2^2+2^3+...+2^{49}\)

<=> 2A=2(1+2+22+23+....+249)

<=>2A=2+22+23+24+....+250

<=> 2A-A=(2+22+23+24+....+250)-(1+2+22+23+....+249)

<=> A=250-1

Lại có B=425=(22)25=250

=> A<B

30 tháng 4 2018

Đương nhiên là a<b rồi,vì A thuộc B mà

18 tháng 4 2019

ChoA=1/26+1/27+1/28+..  +1/49, B=1-1/2+1/3-1/4+... +1/49-1/50

1 tháng 5 2018

Ta có

\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)                                                   \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)

\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\)                                            \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)

\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\)                                                            \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)

\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\)                                                                       \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)

\(\Leftrightarrow A=\frac{4968}{2225}\)                                                                      \(\Leftrightarrow B=\frac{25}{8}\)

\(\Leftrightarrow A=\frac{39744}{17800}\)                                                                     \(\Leftrightarrow B=\frac{55625}{17800}\)

Ta có: 39744<55625

\(\Rightarrow A< B\)

Vậy A<B

1 tháng 5 2018

kb vói mình đã

26 tháng 7 2016

1. \(G=2016.2016=\left(2014+2\right)\left(2018-2\right)=2014.2018-4028+4036-4=2014.2018+4\)

vì 2014.2018+4 >2014.2018

=> G>H

26 tháng 7 2016

\(\frac{2016.2016}{2013.2019}=\frac{\left(2013+3\right)\left(2019-3\right)}{2013.2019}=\frac{2013.2019-6039+6057-9}{2013.2019}=\frac{2013.2019+9}{2013.2019}=1+\frac{9}{2013.2019}\)

vì \(1+\frac{9}{2013.2019}>1\)

\(\frac{2016.2016}{2013.2019}>1\)

24 tháng 4 2018

A =\(\frac{\left(\frac{17}{5}+\frac{1}{5}\right).\frac{2}{5}}{\left(\frac{38}{7}-\frac{9}{4}\right).\frac{56}{267}}\)

A=\(\frac{36}{25}\).\(\frac{3}{2}\)=\(\frac{54}{25}\)=2,16

B=\(\frac{1,2:\left(\frac{6}{5}-\frac{5}{4}\right)}{0,32+\frac{2}{25}}\)=-24.\(\frac{5}{2}\)=-60

vì 2,16 > -60 Vậy A>B

14 tháng 4 2019

ta có : \(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

          \(B=\left(1+\frac{1}{3}+\frac{1}{5}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

          \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+....+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)

            \(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{25}\right)\)

             \(B=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)

\(\Rightarrow\)\(B=A\)

3 tháng 3 2020

Câu này đã có trong câu hỏi tương tự hoặc banjc so thể vào Toán vui hằng tuần, đã có bài toán này rồi nhé !

3 tháng 3 2020

https://olm.vn/hoi-dap/detail/7521148738.html bạn tham khảo nha

14 tháng 5 2018

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)

           \(B=75\%=\frac{3}{4}\)

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)

                \(=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)

                                                                                            \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)

\(\Rightarrow A< B\)

14 tháng 5 2018

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)

           \(B=75\%=\frac{3}{4}\)

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)

                \(=\frac{1}{4}+\left(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\right)< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)

                                                                                            \(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2018}=\frac{3}{4}-\frac{1}{2018}< \frac{3}{4}\)

\(\Rightarrow A< B\)