Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh 1 bđt sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Rightarrow a+2\sqrt{ab}+b\ge a+b\)
\(\Rightarrow a+2\sqrt{ab}+b-a-b\ge0\)
\(\Rightarrow2\sqrt{ab}\ge0\) *đúng*
Dấu "=" xảy ra khi: \(ab=0\)
Trở lại bài toán,vì không có thừa số nào bằng 0,nên ta dễ dàng có: \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)
Hay \(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}=\left(\sqrt{1}+\sqrt{20}\right)+\left(\sqrt{40}+\sqrt{2}\right)+\left(\sqrt{60}+\sqrt{3}\right)>\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}=A\)
A= ( \(\sqrt{1}\)+\(\sqrt{2}\)+\(\sqrt{3}\) ) + (\(\sqrt{20}\) + \(\sqrt{40}\) + \(\sqrt{60}\))
= (1+1,4+1,7)+(4,4+6,3+7,7)
= 4,1+18,4
=22,5
Câu a)
\(A=\sqrt{20+1}+\sqrt{40+2}+\sqrt{60+3}\)
\(=\sqrt{1\left(20+1\right)}+\sqrt{2\left(20+1\right)}+\sqrt{3\left(20+1\right)}\)
\(=\sqrt{20+1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(B=\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{20}+\sqrt{40}+\sqrt{60}\)
\(=1\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\left(\sqrt{1}\cdot\sqrt{20}+\sqrt{2}\cdot\sqrt{20}+\sqrt{3}\cdot\sqrt{20}\right)\)
\(=\sqrt{1}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)+\sqrt{20}\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
\(=\left(\sqrt{20}+\sqrt{1}\right)\left(\sqrt{1}+\sqrt{2}+\sqrt{3}\right)\)
Ta thấy: \(\hept{\begin{cases}\left(\sqrt{20+1}\right)^2=20+1\\\left(\sqrt{20}+\sqrt{1}\right)^2=20+1+2\sqrt{20}\end{cases}}\)
\(\Rightarrow\left(\sqrt{20+1}\right)^2< \left(\sqrt{20}+\sqrt{1}\right)^2\Rightarrow\sqrt{20+1}< \sqrt{20}+\sqrt{1}\)
Vậy A < B.
Đặt \(\sqrt{2011}=a;\sqrt{2012}=b\)
Theo đề, ta có: \(A=\dfrac{a^2}{b}+\dfrac{b^2}{a}=\dfrac{a^3+b^3}{ab}\)
B=a+b
\(A-B=\dfrac{a^3+b^3}{ab}-\left(a+b\right)=\dfrac{a^3+b^3-a^2b-ab^2}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)}{ab}\)
\(=\dfrac{\left(a+b\right)\left(a-b\right)^2}{ab}>0\)
=>A>B
B đâu rồi ? có chắc A sao mà so sánh được