Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a)=1/3-[(-5/4)-5/8]
=1/3-(-15/8)=53/24
b)=5/9:(-3/22)+5/9:(-3/5)
=5/9*22/-3+5/9*5/-3=-110/27+-25/27=5
2
a)Ta có 339<340=920<1120<1121
nên 339<1121
b)Ta có /3,4-x/ lớn hơn hoặc bằng 0 Với mọi x thuộc R
=> -/3,4-x/ bé hơn hoặc bằng 0 Với mọi x thuộc R
=> 0,5-/3,4-x/ bé hơn hoặc bằng 0,5 Với mọi x thuộc R
Dấu = xảy ra khi 3,4-x=0
=>x=3,4
Vậy GTLN của A = 0,5 khi x=3,4
BẠN RẢNH QUÁ!!!
VIẾT CẢ MỘT TRANG DÀI NHƯ BẠN CHẮC HỔNG CÓ THỜI GIAN.
KẾT BẠN VỚI TUI ĐI!!!
A=\(\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^5}{5\left(1+5+5^2+5^3\right)}=\frac{5^4}{1+5+25+125}\)=\(\frac{5^4}{1+155}=\frac{625}{156}\)
B=\(\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^5}{3\left(1+3+3^2+3^3\right)}=\frac{3^4}{1+3+9+27}\)=\(\frac{3^4}{1+39}=\frac{81}{40}\)
Ta có:\(\frac{625}{156}\)>\(\frac{81}{40}\)\(\Rightarrow A\)>\(B\)
\(8A=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)
\(8B=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)
\(\text{Vì }\frac{7}{8^{19}+1}>\frac{7}{8^{24}+1}\)
\(\Rightarrow8A>8B\)
\(\Rightarrow A>B\)
\(\text{Câu B làm tương tự nhé}\)
A và B là các số dương, Ta so sánh các số nghịch đảo của chúng.
Ta có : \(\frac{1}{A}=\frac{5^4+5^3+5^2+5}{5^5^{ }}=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}< \frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}=.\)
\(=\frac{3+3^2+3^3+3^4}{3^{ }^5}=\frac{1}{B}\)Suy ra A>B
1. So sánh
a) \(25^{50}\) và \(2^{300}\)
\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)
\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25< 64\) nên \(25^{50}< 64^{50}\)
Vậy \(25^{50}< 2^{300}\)
b) \(625^{15}\) và \(12^{45}\)
\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)
\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625< 1728\) nên \(625^{15}< 1728^{15}\)
Vậy \(625^{15}< 12^{45}\)
1.So sánh
a)\(25^{50}\) và \(2^{300}\)
Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)
Vì \(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)
b)\(625^{15}\) và \(12^{45}\)
Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)
Vì \(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)
Từ đầu bài
=> 52S=52+54+56+...+5202
=>52S-S= (52+54+56+...+5202)-(1+52+54+...+5200)
=> 24.S = 5202-1
=> S = \(\frac{5^{202}-1}{24}\)