Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1+7+7^2+7^3+.....+7^100
=) 7A= 7+7^2+7^3+7^4+.....+7^101
=)7A-A=6A=7^101-1
Ta có: 7^101-1 <7^101 =) 6A<B =) A<B
tính
1+5^2+5^4+5^6+...+5^200
GIÚP GIÙM ĐI MÌNH ĐANG CẦN GẤP LẮM
AI NHANH DUNG MINH H CHO
Toán lớp 7
Anh Mai 25/12/2015 lúc 11:46
Đặt A= 1+5^2+5^4+5^6+...+5^200
=> 25A= 5^2+...+5^202
=>25A-A=(5^2+..+5^202)-(1+5^2+..+5^200)
24A=5^202-1
=>
\(A=1+7+7^2+7^3+...+7^{100}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{101}\)
\(\Rightarrow7A-A=7^{101}-1\)
\(\Rightarrow6A=7^{101}-1< 7^{101}\)
Vậy : \(A< B\)
\(A=1+7+7^2+7^3+...+7^{100}\)
\(7A=7+7^2+7^3+7^4+....+7^{101}\)
\(7A-A=\left(7+7^2+7^3+...+7^{101}\right)-\left(1+7+7^2+....+7^{100}\right)\) \(6A=7^{101}-1\)
\(A=\dfrac{7^{101}-1}{6}< 7^{101}\)
\(\Rightarrow A< B\)
Vậy....................................................
a) \(A=7+7^2+...+7^{99}\)
\(7A=7^2+7^3+...+7^{100}\)
\(7A-A=7^2+7^3+...+7^{100}-7-7^2-...-7^{99}\)
\(6A=7^{100}-7\)
\(A=\frac{7^{100}-7}{6}\)
Mà 7100 > 7100 - 7 => A < \(\frac{7^{100}}{6}\)
b) \(A=7+7^2+...+7^{99}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{97}+7^{98}+7^{99}\right)\)
\(A=\left(7+7^2+7^3\right)+...+7^{96}.\left(7+7^2+7^3\right)\)
\(A=399+...+7^{96}.399\)
\(A=399.\left(1+...+7^{96}\right)⋮19\left(đpcm\right)\)
Ta có;A= 1/101^2+1/102^2+1/103^2+1/104^2+1/105^2
A>1/(100x101)+1/(101x102)+1/(102x103)+... Vì cùng tử mẫu nhỏ hơn thì lớn hơ
A>1/100-1/101+1/101-1/102+1/102-1/103+...
A>1/100-1/105=1/2100=1/(2^2.3.5^2.7)=B
Vậy A>B
Ta có:A= 1/101^2+1/102^2+1/103^2+1/104^2+1/105^2
A>1/(100x101)+1/(101x102)+1/(102x103)+...
Vì cùng tử mẫu nhỏ hơn thì lớn hơ
A>1/100-1/101+1/101-1/102+1/102-1/103+...
A>1/100-1/105=1/2100=1/(2^2.3.5^2.7)=B
=>Vậy A>B
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
.....
\(\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng vế với vế
=> \(VT>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
=> \(VT>\frac{1}{5}-\frac{1}{101}\)
=> \(VT>\frac{96}{505}>\frac{1}{6}\)
=> \(VT>\frac{1}{6}\)
(VT là vế trái, ý mình là biểu thức bên trên nhưng mình lười gõ lại)
a) Ta có: 266 . 734 = 232 . 234 . 734 < (2.2.7)34 = 2834
Vậy 2834 > 266 . 734
Tương tự
\(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)
\(7A=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\)
\(7A-A=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{99}}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\right)\)
\(6A=1-\frac{1}{7^{100}}< 1\)
\(A< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)
=> \(A< C\)
\(B=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\)
\(7B=1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\)
\(7B-B=\left(1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{n-1}}+\frac{1}{7^n}\right)-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^n}+\frac{1}{7^{n+1}}\right)\)
\(6B=1-\frac{1}{7^{n+1}}< 1\)
\(B< \frac{1}{6}=\frac{7}{42}< \frac{7}{41}=C\)