Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+2^3+......+2^{100}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+......+2^{101}\)
\(\Rightarrow2A-A=A=2^{101}-1\)
Vì \(2^{101}-1< 2^{101}\)\(\Rightarrow A< B\)
Bài làm:
\(A=\frac{101+100+99+...+3+2+1}{101-100+99-98+...+3-2+1}=\frac{\left(101+1\right).101\div2}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)
\(A=\frac{5151}{1+1+...+1+1}=\frac{5151}{51}=101\)(51 số hạng 1)
19.64+76.34 35.12+65.13
=19.64+19.4.34 =35.12+65.(12+1)
=19.64+19.136 =35.12+65.12+65.1
=19.(64+136) =35.12+65.12+65
=19.200 =12.(35+65)+65
=3800 =12.100+65
=1200+65
=1265
Xét tử ta có:
\(101+100+99+98+...........+3+2+1\)
\(=1+2+3+..........+99+100+101\)
\(=\frac{101.102}{2}=5151\)
Xét mẫu ta có:
\(101-100+99-98+.......+3-2+1\)
\(=\left(101-100\right)+\left(99-98\right)+.......+\left(3-2\right)+1\)
\(=1+1+.......+1+1=51\)
\(\Rightarrow A=\frac{5151}{51}=101\)
Hong bé ơi.Bé hong follow anh mà đòi xin đáp án của anh à
đùa nhau chắc