Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3\sqrt{7}+5\sqrt{2}}{\sqrt{5}}=\frac{3\sqrt{35}+5\sqrt{10}}{5}=\frac{3\sqrt{35}+\sqrt{250}}{5}\)
Ta có: \(3\sqrt{35}< 3\sqrt{36}=3\cdot6=18< 18,5\)
\(\sqrt{250}< \sqrt{256}=16\)
\(\Rightarrow3\sqrt{35}+\sqrt{250}< 18,5+16=34,5\Rightarrow\frac{3\sqrt{35}+5\sqrt{10}}{5}< \frac{34,5}{5}=6,9\)
b,\(\sqrt{13}-\sqrt{12}=\frac{1}{\sqrt{13}+\sqrt{12}};\sqrt{7}-\sqrt{6}=\frac{1}{\sqrt{7}+\sqrt{6}}\)
Vì \(\sqrt{13}+\sqrt{12}>\sqrt{7}+\sqrt{6}\)nên \(\frac{1}{\sqrt{13}+\sqrt{12}}< \frac{1}{\sqrt{7}+\sqrt{6}}\)
\(\Rightarrow\sqrt{13}-\sqrt{12}< \sqrt{7}-\sqrt{6}\)
\(a.\)Ta có: \(3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{45} \)
\(2\sqrt{10}=\sqrt{4}\cdot\sqrt{10}=\sqrt{40}\)
Mà \(45>40\Leftrightarrow\sqrt{45}>\sqrt{40}\)
Vậy \(3\sqrt{5}>2\sqrt{10}\)
\(b.\)Ta có:\(2\sqrt{5}=\sqrt{4}\cdot\sqrt{5}=\sqrt{20}\)
Mà \(20 < 21 \Leftrightarrow \sqrt{20} < \sqrt{21}\)
Vậy \(2\sqrt{5} < \sqrt{21}\)
\(c.\)Ta có: \(\left(\sqrt{7}+\sqrt{15}\right)^2=7+2\cdot\sqrt{7}\cdot\sqrt{15}+15=22+2\sqrt{105}=22+\sqrt{420}\)
\(7^2=49=22+\sqrt{27^2}=22+\sqrt{729}\)
Lại có:\(420< 729\Rightarrow\sqrt{420}< \sqrt{729}\)
\(\Rightarrow22+\sqrt{420}< 22+\sqrt{729}\)
\(\Rightarrow\left(\sqrt{7}+\sqrt{15}\right)^2< 7^2\)
Vậy \(\sqrt{7}+\sqrt{15}< 7\)