Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Ta có : A}=222^{555}=(222^5)^{111}\)
\(\text{B}=555^{222}=(555^2)^{111}\)
\(\text{Vì }222^{555}-555^{222}>0\Rightarrow A>B\)
Chúc bạn học tốt :>
\(\text{Có j thắc mắc thì cứ hỏi mk}\)
ta có:
A=222555=(2225)111
B=555222=(5552)111
=>A>B vì 2225>5552
vậy A>B
a: \(10^6-5^7=5^6\cdot2^6-5^6\cdot5=5^6\cdot59⋮59\)
b: \(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
mà 8192>3125
nên \(2^{91}>5^{35}\)
31^30.2 & 17^37.2 ; (31.30)^2 & (17.37)^2 ; 930^2 & 629^2 ; suy ra 31^60 lớn hơn ,dấu chấm ( .) là dấu nhân
X2-\(\frac{7}{9}\)X=0 <=> X(X-\(\frac{7}{9}\))=0
=> x=0 hoặc x-\(\frac{7}{9}\)=0
x-\(\frac{7}{9}\)=0 <=>X=0+\(\frac{7}{9}\)=\(\frac{7}{9}\)
=> X=0 hoặc \(\frac{7}{9}\)
Đặt A = 1 + 2 + 22 + 23 + ..... + 231
=> 2A = 2 + 22 + 23 + ..... + 232
=> 2A - A = 232 - 1
=> A = 232 - 1
Vì 232 < 238 nên A < 238
cái này lớp 6 làm cũng đc
đặt S làm biểu thức trên.
\(S=\)\(1+2+2^2+2^3+...+2^{31}\)
\(2S=2.\left(1+2+2^2+2^3+...+2^{31}\right)\)
\(2S=2+2^2+2^3+2^4+...+2^{32}\)
\(2S-S=\left(2+2^2+2^3+2^4+...+2^{32}\right)-\left(1+2+2^2+2^3+...+2^{31}\right)\)
\(S=2^{32}-1\)
VÌ \(2^{32}-1< 2^{38}\)nên \(1+2+2^2+2^3+...+2^{31}< 2^{38}\)
Ta có :
xn = x . x . x . .... . x
n thừa số x
=> ( xn )m = x . x . x . x . .... . x
m lần n thừa số x
= xn.m
a) 331 và 241
331 = 3.330 = 3.(33)10=3.2710
241= 2.240 = 2.(24)10=2.1610
ta thấy : 3.2710 > 2.1610 vì 3>2 và 2710>1610
=> 331 > 241
b)421 và 331
tương tự cau a
421 = 4.1610 = 4.16.169 = 64.169
331=3.2710 = 3.27.279= 81.279
ta có 64.169 < 81.279
suy ra 421< 331
a,\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2< 9^{10}.3=\left(3^2\right)^{10}.3=3^{20}.3=3^{21}\)
b,\(2^{99}=\left(2^3\right)^{33}=8^{33}>3^{21}\)
c,\(31^{14}< 32^{14}=\left(2^5\right)^{14}=2^{70}< 2^{72}=\left(2^4\right)^{18}=16^{18}< 17^{18}\)
d,\(63^{10}< 64^{10}=\left(2^6\right)^{10}=2^{60}< 2^{65}=\left(2^5\right)^{13}=32^{13}< 33^{13}\)
Ta có:
3160 < 3260
3160 < (25)60
3160 < 2300
1774 > 1674
1774 > (24)74
1774 > 2296
Ta thấy:
2296 < 1714 < 3160 < 2300
Vậy 3160 > 1774