K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

2^50=(2^5)^10=32^10

5^20=(5^2)^10=25^10

Vì 32^10>25^10

Nên 2^50>5^20

10 tháng 11 2019

250=(25)10=3210

520=(52)10=2510

Vì 3210 >  2510\(\Rightarrow\)250>520

~~~hok tốt~~~

k cho nhé

10 tháng 11 2019

Ta có :

250 = ( 25 )10 = 3210

520 = ( 52 )10 = 2510

=> 250 > 520

10 tháng 11 2019

\(2^{50}=\left(2^5\right)^{10}=32^{10}\)

\(5^{20}=\left(5^2\right)^{10}=25^{10}\)

vì  32 > 25 nên \(32^{10}>25^{10}\)

nên \(2^{50}>5^{20}\)

8 tháng 7 2016

a/ ta co \(50^{20}=\left(50^2\right)^{10}\)

           \(\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)

           Hay \(50^{20}< 2550^{10}\)

b/   ta có  \(3^{75}=\left(3^3\right)^{25}\)

              \(5^{50}=\left(5^2\right)^{25}\)

\(\Rightarrow\left(3^3\right)^{25}=27^{25}\)

\(\Rightarrow\left(5^2\right)^{25}=25^{25}\)

Vay \(3^{75}>5^{50}\)

2 tháng 12 2015

a. \(2^{100}=\left(2^2\right)^{50}=4^{50}<5^{50}\)

Vậy \(2^{100}<5^{50}.\)

b. \(4^{30}=\left(2^2\right)^{30}=2^{60}\)(1)

\(8^{20}=\left(2^3\right)^{20}=2^{60}\)(2)

Từ (1) và (2) => \(4^{30}=8^{20}.\)

 

27 tháng 8 2016

a. Ta có: \(50^{20}=50^{2.10}=2500^{10}< 2550^{10}\)

Vậy \(5^{20}< 2550^{10}\)

Ý b làm tương tự, tách 10 thành 5.2 là được.

27 tháng 8 2016

a) 5020 và 255010

ta có : 5020=(502)10=250010

=> 250010<255010

vì 2500<2550 và 10=10

hay 5020<255010

Vậy 5020<255010

b)99910 và 9999995

Ta có : 99910 = (9992)5

          9999995 = (999.1001)5

Ta thấy : (9992)=999.999 

 999.999 < 999.1001 vì 999<1001

=> 9992<999.1001

=>(9992)5<(999.1001)5

hay 99910<9999995

 Vậy 99910< 9999995

31 tháng 7 2016

\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)

Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 7 2016

a) \(10^{20}\) và \(9^{10}\)

Vì 10 > 9 ; 20 > 10

nên \(10^{20}>9^{10}\)

Vậy \(10^{20}>9^{10}\)

b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)

Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)

           \(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)

Vì 243 > 125 nên \(125^{10}< 243^{10}\)

Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)

c) \(64^8\) và \(16^{12}\)

Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)

          \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Vậy \(64^8=16^{12}\left(=4^{24}\right)\)

d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)

Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)

Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)

Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)

29 tháng 7 2017

 \(2^0+2^1+2^2+2^3+...+2^{50}=1+2+2.2+2^2.2+...+2^{49}.2\)

                                                                    \(=1+2\left(1+2+2^2+2^3+...+2^{49}\right)\)

                                                                    \(=1+2\left(2^{50}-1\right)\)

                                                                    \(=1+2^{51}-2\)

                                                                    \(=2^{51}-1< 2^{51}\)

Vậy \(2^0+2^1+2^2+2^3+...+2^{50}< 2^{51}\)

Ý trc mình ko biết sorry bạn nhiều

T i c k cho mình nha mình mới có 4 điểm, thanks

29 tháng 7 2017

230+ 330+ 430 = 

9 tháng 10 2016

Ta có:

55520 = (5.111)20 = 520.11120 = (52)10.11120 = 2510.11120

22250 = (2.111)50 = 250.11150 = (25)10.11150 = 3210.11150

Vì 2510.11120 < 3210.11150

=> 55520 < 22250

9 tháng 10 2016

Ta có: 555^20 = (5 . 111)^20 = 5^20 . 111^20 = (5^2)^10 . 111^20 = 25^10 . 111^20

222^50 = (2 . 111)^50 = 2^50 . 111^50 = (2^5)^10 . 111^50 = 32^10 . 111^50

Vì 25^10 < 32^10 và 111^20 < 111^50 nên 25^10 . 111^20 < 32^10 . 111^50

Vậy 555^20 < 222^50.

27 tháng 7 2018

Ta có :

\(2^{100}=\left(2^4\right)^{25}=16^{25}\)

\(3^{75}=\left(3^3\right)^{25}=27^{25}\)

\(5^{50}=\left(5^2\right)^{25}=25^{25}\)

Do \(16^{25}< 25^{25}< 27^{25}\)

\(\Rightarrow2^{100}< 5^{50}< 3^{75}\)