K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

Vì 23 < 32 (8<9)

22223 < 33332

7 tháng 4 2017

2222> 33332

23 tháng 10 2018

22223333=33332222

P/S:Không nhận đá ném vô mặt

10 tháng 10 2015

Ta có :

\(2222^{3333}=\left(1111^3.8\right)^{1111}\)

\(3333^{2222}=\left(1111^3.9\right)^{1111}\)

Vì 8 < 9 nên 22223333 < 33332222

10 tháng 10 2015

2222^3333=(1111^3.8)^1111

3333^2222=(1111^3.9)

Vì 8<9

=>2222^3333<3333^2222

30 tháng 7 2015

a)Ta có 2222^3333=2222^3x1111=(2222^3)^1111=(1111^3x2^3)^1111=(1111^3x8)^1111

Tương tự:ta có:3333^2222=(1111^3x9)^1111

Vì 8<9 nên 2222^3333<3333^2222

 

30 tháng 7 2016

a<

b>

c>

d>

15 tháng 6 2016

Ta có: 2222+4 chia hết cho 7=>2222=-4(mod 7)=>22225555 = (-4)5555 (mod 7)

          5555-4 chia hết cho 7 => 5555=4(mod 7)=>55552222 =42222 (mod 7)

=>22225555 =55552222  = (-4)5555 +42222  (mod 7)

Mà 42222  =(-4)2222 => (-4)5555 +42222 = (-4)2222  + 43333 x 42222 

              =(-4)2222 x 43333 - (-4)2222 = (-4)2222(43333 -1 )=43 -1(mod 7) (1)

Ta lại có: 43 =1(mod 7)=>43 -1=63 chia hết cho 7 =>43 -1=0(mod 7) (2)

Nên (-4)5555 +42222 = 0(mod 7)

Từ (1) và (2) =>22225555 +55552222  chia hết cho 7

15 tháng 6 2016

0 hieu cai de j ma ki z!!!!!!!!!!!!!

6 tháng 8 2016

2225 = (23)75 = 875

3151 > 3150 = (32)75 = 975

=> 3151 > 975 > 875

=> 3151 > 2225

6 tháng 8 2016

4n - 5 chia hết cho 2n - 1

=> 4n - 2 - 3 chia hết cho 2n - 1

=> 2.(2n - 1) - 3 chia hết cho 2n - 1

Do 2.(2n - 1) chia hết cho 2n - 1 => 3 chia hết cho 2n - 1

Mà n thuộc N => 2n - 1 > hoặc = -1

=> 2n - 1 thuộc {-1 ; 1 ; 3}

=> 2n thuộc {0 ; 2 ; 4}

=> n thuộc {0 ; 1 ; 2}

15 tháng 7 2019

So sánh : và \(72^{44}-72^{43}\)

Ta có :

       \(72^{45}-72^{44}=72^{44}\left(72-1\right)\)

       \(72^{44}-72^{43}=72^{43}\left(72-1\right)\)

Vì 7244 > 7243 => 7244 (72-1)  > 7243 (72-1)

                    hay 7245 -7244 > 7244 - 7243 

            

          

15 tháng 7 2019

Nhanh hộ mọi người😦😦😦😦😦😨

25 tháng 10 2020

\(A=3+3^2+3^3+...+3^{2016}\)

\(3A=3^2+3^3+3^4+...+3^{2017}\)

\(2A=3^{2017}-3\)

\(A=\frac{3^{2017}-3}{2}< 3^{2017}-3\)

\(\Rightarrow A< B\)

27 tháng 9 2019

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

27 tháng 9 2019

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

6 tháng 10 2020

a) \(2^3=8\) ; \(3^2=9\)

=> \(2^3< 3^2\)

b) \(3^{210}\cdot3^{10}=3^{210+10}=3^{220}>3^{215}\)

=> \(3^{215}< 3^{210}.3^{10}\)

6 tháng 10 2020

a,\(2^3\)và \(3^2\)

\(2^3=8\)\(3^2=9\)

Vì \(8< 9\Rightarrow2^3< 3^2\)

Vậy....

b,\(3^{215}\)và \(3^{210}.3^{10}\)

\(3^{215}\)và \(3^{220}\)

\(3^{215}< 3^{220}\Rightarrow3^{215}< 3^{210}.3^{10}\)

Vậy...