Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 300200=(3.100)200=3200.100200=32.100.102.100=(32)100.1002.100100=9100.1002.100100
200300=(2.100)300=2300.100300=23.100.103.100=(23)100.1002+1.100100=8100.100.1002.100100
Ta thấy:82.100=82.102=802<81=92
=>82.100<92
Mà 898<998
=>82.100.898<92.998
=>8100.100<9100
=>8100.100.1002.100100<9100.1002.100100
=>200300<300200
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
tick cái bạn
\(I-2I^{300}vàI-4I^{500}\)
ta có I -2I ^300 = 2^300
I-4I^500= 4^500= 2^2^500= 2^1000
vậy I-4I mũ 500 lớn hơn
Ta có 3^300 = 27^100
5^200 = 25 ^ 100
Vì 25^100 < 27^100 => 5^200 < 3^300
2300 = (23)100 = 8100
3200 = (32)100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
Tick mk đc chứ !!
2300 = ( 23 ) 100 = 8100
3200 = ( 32 ) 100 = 9100
Vì 8100 < 9100 nên 2300 < 3200
Tick tớ đc chứ !
a.
\(3^{200}=\left(3^2\right)^{100}=9^{100}>8^{100}=\left(2^3\right)^{100}=2^{300}\)
Vậy \(3^{200}>2^{300}\)
b.
\(5^{200}=\left(5^2\right)^{100}=25^{100}< 32^{100}=\left(2^5\right)^{100}=2^{500}\)
Vậy \(5^{200}< 2^{500}\)
Ta có : \(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(\Rightarrow9^{100}>8^{100}\)
\(\Rightarrow3^{200}>2^{300}\)
3200 = 32.100 = 9100 (1)
2300 = 23.100 = 8100 (2)
Từ (1) và(2) ta có: 3200>2300
3200 = 32.100 = (32)100 = 9100
2300 = 23.100 = (23)100 = 8100
9100 > 8100 ( vì 9 > 8 ) nên 3200 > 2300.
Bạn tham khảo câu hỏi tương tự của bạn Nguyễn Ngọc Diễm Quỳnh ấy
2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
Vì 9>8 =>9^100>8^100 =>2^300<3^200
ta có :
2300=(23)100=8100
3200=(32)100=9100
vì 8100<9100 nên 2300<3200
2^300=(2^3)^100=8^100
3^200=(3^2)^100=9^100
vi 8^100<9^100 nen 2^300<3^200
3200 VÀ 2300
3200 = ( 32)100 = 9100
2300 = ( 23)100 = 8100
MÀ 9100> 8100
NÊN 3200> 2300
thê này à mn