Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2005\cdot2004-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot\left(2003+1\right)-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2005-1}{2003\cdot2005+2004}\)
\(=\frac{2005\cdot2003+2004}{2003\cdot2005+2004}\)
\(=1\)
2005 x 2004 - 1 / 2003 × 2005 + 2004
= 2005 × (2003 + 1) - 1 / 2003 × 2005 + 2004
= 2005 × 2003 + (2005 - 1) / 2003 × 2005 + 2004
= 2005 × 2003 + 2004 / 2003 × 2005 + 2004
= 1
\(\frac{2005\times2004-1}{2003\times2005+2004}=\frac{2005\times2003+2005-1}{2003\times2005+2004}=\frac{2005\times2003+2004}{2003\times2005+2004}=1\)
\(\frac{2005x2004-1}{2003x2005+2004}\)=\(\frac{4018019}{4018019}\)= 1
y=\(\frac{2006x2005-1}{2004x2006+2005}=\frac{2006x2005-1}{\left(2005-1\right)x2006+2005}=\frac{2006x2005-1}{2005x2006-2006+2005}=\frac{2006x2005-1}{2005x2006-1}=1\)
A = 2006 x 125 + 1000 / 126 x 2005 - 888
A = (2005 + 1) x 125 + 1000 / (125 + 1) x 2005 - 888
A = 2005 x 125 + 125 + 1000 / 125 x 2005 + 2005 - 888
A = 2005 x 125 + 1125 / 125 x 2005 + 1117
A = 1125 / 1117
a) \(\frac{2004}{2005}=1-\frac{1}{2005}\);\(\frac{2005}{2006}=1-\frac{1}{2006}\)
Vì \(\frac{1}{2005}>\frac{1}{2006}\)=>\(1-\frac{1}{2005}< 1-\frac{1}{2006}\)=>\(\frac{2004}{2005}< \frac{2005}{2006}\)
Ta làm đơn giản :
A = \(\frac{2005x2005+1}{2005x2005x2005-1}=\frac{1}{2005-1}=\frac{1}{2004}\)
B = \(\frac{2005+1}{2005x2005-1}\)=\(\frac{2006}{4020024}=\frac{1}{2004}\)
\(\frac{1}{2004}=\frac{1}{2004}\)
Nên A = B