\(\frac{11}{15}\)và \(\frac{13}{14}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Ta có :

\(\frac{11}{15}=\frac{11\times14}{15\times14}=\frac{154}{210}\);

\(\frac{13}{14}=\frac{13\times15}{14\times15}=\frac{195}{210}\)

Vì : \(\frac{154}{210}< \frac{195}{210}\)nên \(\frac{11}{15}< \frac{13}{14}\)

28 tháng 2 2017

Ta có :

  \(\frac{11}{15}=\frac{11\times14}{15\times14}=\frac{154}{210}\)       \(\frac{13}{14}=\frac{13\times15}{14\times15}=\frac{195}{210}\)

Ta thấy \(154< 195\)

=> \(\frac{11}{15}< \frac{13}{14}\)

24 tháng 4 2020

\(\frac{-13}{14}>\frac{-15}{16}\)

23 tháng 6 2018

trả lời giúp mình nha! mình sẽ cho  ^^

23 tháng 6 2018

11/14   12/13     15/15    33/32    34/31

9 tháng 3 2020

Bài 1 :

Đặt \(A=\frac{11^{13}+1}{11^{14}+1}\) và \(B=\frac{11^{14}+1}{11^{15}+1}\)

Có : \(A=\frac{11^{13}+1}{11^{14}+1}\)

\(\Rightarrow11A=\frac{11^{14}+11}{11^{14}+1}=\frac{11^{14}+1+10}{11^{14}+1}=1+\frac{10}{11^{14}+1}\)

Lại có : \(B=\frac{11^{14}+1}{11^{15}+1}\)

\(\Rightarrow11B=\frac{11^{15}+11}{11^{15}+1}=\frac{11^{15}+1+10}{11^{15}+1}=1+\frac{10}{11^{15}+1}\)

Vì 1114+1<1115+1

\(\Rightarrow\frac{10}{11^{14}+1}>\frac{10}{11^{15}+1}\Rightarrow1+\frac{10}{11^{14}+1}>1+\frac{10}{11^{15}+1}\Rightarrow11A>11B\Rightarrow A>B\)

Vậy A>B.

9 tháng 3 2020

Bài 2 :

a) Gọi (n+1,2n+3) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (n+1,2n+3) là 1

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản(đpcm)

b) Gọi (12n+1,30n+2) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (12n+1,30n+2) là 1

\(\Rightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản(đpcm)

c và d tương tự

5 tháng 3 2019

a>

b<

c>

d<

30 tháng 8 2017

Vì 1113 . 1115 = 1114 . 1114 = 1128 nên \(\frac{11^{13}+1}{11^{14}+1}=\frac{11^{14}+1}{11^{15}+1}\)

18 tháng 8 2017

1113+1/ 1114+1 = 1114+1/1115+1

22 tháng 2 2020

Đặt \(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Rightarrow2A=\frac{2^{16}+2}{2^{16}+1}=\frac{2^{16}+1+1}{2^{16}+1}=1+\frac{1}{2^{16}+1}\)

Đặt \(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Rightarrow2B=\frac{2^{15}+2}{2^{15}+1}=\frac{2^{15}+1+1}{2^{15}+1}=1+\frac{1}{2^{15}+1}\)

Vì 216+1>215+1

\(\Rightarrow\frac{1}{2^{16}+1}< \frac{1}{2^{15}+1}\)

\(\Rightarrow1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\)

\(\Rightarrow2A< 2B\Rightarrow A< B\)

Vậy...

22 tháng 2 2020

\(A=\frac{2^{15}+1}{2^{16}+1}\)

\(\Leftrightarrow\)\(2A=1+\frac{1}{2^{16}+1}\)

\(B=\frac{2^{14}+1}{2^{15}+1}\)

\(\Leftrightarrow2B=1+\frac{1}{2^{15}+1}\)

Nhận thấy : \(1+\frac{1}{2^{16}+1}< 1+\frac{1}{2^{15}+1}\Leftrightarrow2A< 2B\Leftrightarrow A< B\)

8 tháng 3 2018

\(0>\frac{-9}{10}>\frac{-13}{15}>\frac{4}{-12}>\frac{11}{-6}\)

CHÚC BN HỌC TỐT!