K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2020

Bài 1 :

Đặt \(A=\frac{11^{13}+1}{11^{14}+1}\) và \(B=\frac{11^{14}+1}{11^{15}+1}\)

Có : \(A=\frac{11^{13}+1}{11^{14}+1}\)

\(\Rightarrow11A=\frac{11^{14}+11}{11^{14}+1}=\frac{11^{14}+1+10}{11^{14}+1}=1+\frac{10}{11^{14}+1}\)

Lại có : \(B=\frac{11^{14}+1}{11^{15}+1}\)

\(\Rightarrow11B=\frac{11^{15}+11}{11^{15}+1}=\frac{11^{15}+1+10}{11^{15}+1}=1+\frac{10}{11^{15}+1}\)

Vì 1114+1<1115+1

\(\Rightarrow\frac{10}{11^{14}+1}>\frac{10}{11^{15}+1}\Rightarrow1+\frac{10}{11^{14}+1}>1+\frac{10}{11^{15}+1}\Rightarrow11A>11B\Rightarrow A>B\)

Vậy A>B.

9 tháng 3 2020

Bài 2 :

a) Gọi (n+1,2n+3) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (n+1,2n+3) là 1

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản(đpcm)

b) Gọi (12n+1,30n+2) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (12n+1,30n+2) là 1

\(\Rightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản(đpcm)

c và d tương tự