K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Dùng cách phân số trung gian

Ta có:

\(\dfrac{5}{-12}>\dfrac{5}{17}\left(1\right)\)

\(\dfrac{5}{17}>\dfrac{-6}{17}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\dfrac{5}{-17}>\dfrac{5}{17}>\dfrac{-6}{17}\)

\(\Rightarrow\dfrac{5}{-17}>\dfrac{-6}{17}\)

Vậy \(\dfrac{5}{-17}>\dfrac{-6}{17}\)

8 tháng 8 2017

Dùng cách " nhân chéo" nha bạn.

\(\dfrac{5}{-12}\)\(\dfrac{-6}{17}\)

Lấy :

\(5.17=85\)

\(\left(-6\right).\left(-12\right)\)\(=72\)

Rồi sau đó bạn so sánh hai tích vừa tìm được.

85>72

Vậy \(\dfrac{5}{-12}\)>\(\dfrac{-6}{17}\)

29 tháng 8 2017

lê tiến trường

\(\left|x-564\right|=532\)

\(\Rightarrow\left[{}\begin{matrix}x-564=532\\x-564=-532\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=532+564=1096\\x=\left(-532\right)+564=32\end{matrix}\right.\)

Vậy x = 1096 và x = 32

29 tháng 8 2017

TH1: x-564=532

x= 532+564

x= 1098

TH2: x-564=-532

x= -532+564

x= 34

X thuộc( phải bằng dau) \(\left\{34,1098\right\}\)

17 tháng 10 2017

\(\left(\dfrac{-5}{13}\right)^{2017}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(-\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(\dfrac{-5}{13}\right)\cdot\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}=\left(-\dfrac{5}{13}\right)\cdot\left[\left(\dfrac{5}{13}\right)^{2016}\cdot\left(\dfrac{13}{5}\right)^{2016}\right]=\left(-\dfrac{5}{13}\right)\cdot1^{2016}=\left(-\dfrac{5}{13}\right)\cdot1=-\dfrac{5}{13}\)

24 tháng 3 2017

Xét 2 t.h là ra mà bn : a âm - b dương

a dương -b âm ( loại vì thế k thỏa mãn bài )

26 tháng 3 2017

minhf cũng làm theo cach này nhưng cô bảo là chưa chắc đã dc điểmkhocroi

30 tháng 8 2017

>> Mình không chép lại đề bài nhé ! <<

Cách 1 :

\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)

Cách 2 :

\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)

\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)

\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)

30 tháng 8 2017

Cách 1 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)

\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)

\(=-\dfrac{5}{2}\)

Cách 2 :

\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)

\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)

\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)

\(=\left(-2\right)+0+\dfrac{-1}{2}\)

\(=\dfrac{-5}{2}\)

29 tháng 9 2016

sai cả hai câu rồi kìa !

29 tháng 9 2016

a) \(\frac{x}{7}=\frac{18}{14}\)

\(\Rightarrow\frac{x}{7}=\frac{9}{7}\)

\(\Rightarrow x=7\)

Vậy x=7

b)\(6:x=1\frac{3}{4}:5\)

\(\frac{6}{x}=\frac{7}{4}:5\)

\(\frac{6}{x}=\frac{7}{20}\)

\(\Rightarrow6.20=7x\)

\(\Rightarrow120=7.x\)

\(\Rightarrow x=\frac{120}{7}\)

Vậy \(x=\frac{120}{7}\)

 

9 tháng 10 2016

Ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)

Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)

9 tháng 10 2016

\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)

\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)

\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)

Áp dụng tính chất tỉ số bằng nhau, ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)

15 tháng 3 2017

2.

a) +) ta co: tam giác GLO

GL = 6, LO = 8, OG = 10

=> GL < LO < GO ( 6<8<10)

=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )

+) ta co: tam giac UVW

góc V = 40, góc U = 50

=> góc W = 180 - ( góc V + goc Ư )

= 180 - ( 50 + 40)

= 90

=> góc V < góc U < góc W

=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

15 tháng 3 2017

Bài 1 de rồi bạn tự làm nhé!!