Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{15}{106}\)và \(\frac{21}{133}\)
Ta có:
\(\frac{15}{106}< \frac{15}{100}=\frac{3}{20}=\frac{21}{140}< \frac{21}{133}\)
\(\Rightarrow\frac{15}{106}< \frac{21}{133}\)
Vậy ........
b, \(\frac{31}{100}\)và \(\frac{89}{150}\)
Ta có:
\(\frac{31}{100}< \frac{31}{93}=\frac{1}{3}=\frac{50}{150}< \frac{89}{150}\)
\(\Rightarrow\frac{31}{100}< \frac{89}{150}\)
Vậy........
c, \(\frac{2020}{2019}\)và \(\frac{2021}{2020}\)
Ta có:
\(\frac{2020}{2019}-1=\frac{1}{2019}\) ;
\(\frac{2021}{2020}-1=\frac{1}{2020}\)
Vì \(\frac{1}{2019}>\frac{1}{2020}\)
\(\Rightarrow\frac{2020}{2019}-1>\frac{2021}{2020}-1\)
\(\Rightarrow\frac{2020}{2019}>\frac{2021}{2020}\)
Vậy .........
d, n+2019/n+2021 và n+2020/n+2022
Câu d bn tự lm nhé
\(\dfrac{-11}{-32}>\dfrac{16}{49}\)
\(\dfrac{-2020}{-2021}>\dfrac{-2021}{2022}\)
1) \(16^{2020}+\dfrac{1}{16^{2021}}+1\)
\(=16^{2021}\div16^{2020}+1\)
\(=16+1\)
\(=17\)
2) \(16^{2021}+\dfrac{1}{16^{2022}}+1\)
\(=16^{2022}\div16^{2021}+1\)
\(=16+1\)
= 17
Vì 17=17 nên \(16^{2020}+\dfrac{1}{16^{2021}}+1=16^{2021}+\dfrac{1}{16^{2022}}+1\)
Lời giải:
$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$
$\Rightarrow A>B$
Có: \(2022>2020\)
\(\Rightarrow\dfrac{1}{2022}< \dfrac{1}{2020}\)
\(\Rightarrow\dfrac{2021}{2022}< \dfrac{2021}{2020}\)