Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S-S=\left(2+2^2+2^3+...+2^{10}\right)-\left(1+2+2^2+...+2^9\right)\)
\(2S-S=2+2^2+2^3+...+2^{10}-1-2-2^2-...-2^9\)
\(S=2^{10}-1\)
\(P=4.\frac{5}{4}.2^8\)
\(P=2^2.2^8.\frac{5}{4}=2^{10}.\frac{5}{4}\)
\(\Rightarrow S< P\)
Đặt A = 1 + 2 +22 + ... + 29
A . 2 = 2 + 22 + 23 +... + 210
A . 2 - A = ( 2 + 22 + 23 + ... + 210 ) - ( 1 + 2 +22 + ... + 29 )
A = 210 - 1
A = 1023
5. 28 = 1280
Mà 1280 > 1023
Vậy ( 1 + 2 + 22 +... +29 ) < 5 . 28
****
Ta có : S = 1 + 2 + 22 + ..... + 29
=> 2S = 2 + 22 + ..... + 210
=> 2S - S = 210 - 1
=> S = 210 - 1
Lại có : 5.28
= (4 + 1).28
= 210 + 28
Nên S < 5.28
2S=2(1+2+22+23+..+29)
2S=2+22+...+210
2S-S=(2+22+...+210)-(1+2+22+23+..+29)
S=210-1 (tới đây tách ra làm như Trinh Hai Nam)
S=1+2+2^2+2^3+....+2^9
2S=2+2^2+2^3+.....+2^10
2S-S=2^10-1
=>S=2^10-1
=1024-1
=1023
5.2^8=5.256=1280
Vì 1023<1280=>S<5.2^8
1+2+22+23+24+.........+29
2S= 2+22+23+24+........+29+210
2S-S= ( 2+22+23+24+........+29+210)-(1+2+22+23+24+.........+29)
S= 210-1
Ta có: 5.28= (4+1).28
= 4.28+ 28
= 22.28+28
= 210+28
=> 210-1 < 210+28
Hay S < 5.28
\(2S=2+2^2+2^3+2^4+...+2^{10}\)
=> \(2S-S=\left(2+2^2+2^3+2^4+...+2^{10}\right)-\left(1+2+2^2+2^3+...+2^9\right)\)
=> \(S=2^{10}-1=1024-1=1023\)
Mà \(5.2^8=5.256=1280\)
Vì 1023 < 1280
=> \(S<5.2^8\).
Ta có :
2S=2+2^2+2^3+...+2^10
2S-S=2+2^2+2^3+...+2^10-1-2-2^2-...-2^9
S=2^10-1
=>S<2^10 (1)
Ta lại có :
5.2^8>2^10 (2)
Tu (1) va (2) suy ra : S<5.2^8
****
\(S=1+2+2^2+2^3+....+2^8+2^9.\)
\(\Rightarrow2S=\text{}2+2^2+2^3+....+2^8+2^9+2^{10}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+....+2^8+2^9+2^{10}\right)-\left(1+2+2^2+2^3+....+2^8+2^9\right)\)
\(S=2^{10}-1=1024-1=1023< 5\cdot2^8=5\cdot256=1280\)
Cho S = 1+2+22+23+...+29
=> 2S = 2+22+23+...+29+210
=> 2S - S = S = 210 - 1 = 28 . 22 - 1 = 28 . 4 - 1
Ta có 5 . 28 = 4 . 28 + 28
Vì 1 < 28 nên S < 5 . 28